Herzlich Willkommen!

Wir sehen uns hier einen Klassiker der Lagrange-Mechanik, nämlich das mathematische Doppelpendel, mit einer vertikal federnden Aufhängung an. Das ist auch insofern ein gutes Beispiel für Lagrange-Mechanik, als es sich um insgesamt drei Freiheitsgrade handelt.

Ein mathematisches Doppelpendel ist mittels einer Feder am Koordinatenursprung aufgehängt. Die Pendelmassen seien jeweils m und die Pendellängen l. Die Federkonstante betrage c und die Feder sei in der Position r = r0 vollkommen entspannt.

Ermittle für dieses System:
(a) die generalisierten Koordinaten und Geschwindigkeiten.
(b) die Lagrange Funktion L.
(c) die Bewegungsgleichungen in allen generalisierten Koordinaten.
(d) die Periodendauer T des Systems, wenn die Pendelwinkel durch ein technisches Gebrechen plötzlich fixiert werden, d.h. φ = φ0 = const. und ψ = ψ0 = const.

Die Angabe gibt es wie gewohnt zum Download.

Wir benötigen zu Beginn wieder die Koordinaten und Geschwindigkeiten der Massepunkte im System um die Energien aufstellen zu können. Die Koordinaten des Aufhängepunktes sind nicht notwendig, obwohl sich dieser natürlich bewegt. Allerdings hat er in dieser Idealisierung keine Masse und damit auch keine Energie und trägt damit auch nichts zur Lagrangefunktion bei. Anschließend können wir kinetische und potentielle Energie des Systems, sowie die Lagrangefunktion berechnen. Damit lassen sich über die Euler-Lagrange-Gleichungen drei gekoppelte Bewegungsgleichungen für die beiden Pendelwinkel und die Federauslenkung ableiten. Als Spezialfall betrachten wir dann noch die Bewegung für die Federauslenkung r wenn die beiden Pendelwinkel fixiert werden. Dabei handelt es sich dann direkt um eine Linearisierung und wir können Eigenkreisfrequenz und Periodendauer bestimmt werden. Alle Details inkl. weiterer Diskussionen gibt es wie gewohnt im verlinkten Video. Viel Spaß dabei!

Unterstützt bitte auch meine Arbeit durch ein Like und eine Weiterempfehlung der Website und meines YouTube Kanals. Falls ihr es noch nicht getan habt, helft ihr außerdem mit einem Abo des Blogs und des Kanals. Das kostet schließlich nichts. Vielen Dank!

Viel Spaß mit dem Beispiel und bis bald,
Markus

Ein Kommentar zu „Lagrange: Doppelpendel an Federaufhängung

Kommentar verfassen