Herzlich Willkommen!

Ein sehr interessantes – und oft in der analytischen Mechanik anzutreffendes – Beispiel ist jenes, das wir uns in diesem Beitrag genauer ansehen wollen.

Ein Seil der Länge l wird senkrecht in die Luft geworfen. Es sei voll beweglich, sodass der Knick frei über das Seil laufen kann. Die Seilmasse pro Längeneinheit sei ρ. Die Krümmung der Knickstelle ist als vernachlässigbar anzusehen, d.h. die relevante Bewegung findet nur in x-Richtung statt.

Ges.:
*Finde geeignete generalisierte Koordinaten und stelle die Lagrangefunktion des Systems auf.
*Leite die Bewegungsgleichungen der generalisierten Koordinaten her.
*Wie verhält sich die Geschwindigkeit der Knickstelle, wenn diese das Seilende erreicht?

Die Angabe gibt es wie üblich als Download, damit du dir das Beispiel in Ruhe selbst ansehen kannst.

Auch hier braucht es zu Beginn einen Ansatz für die generalisierten Koordinaten bzw. die Koordinaten der Schwerpunkte der beiden Teilstücke des Seils. Dabei hilft uns wieder eine Zwangsbedingung, nämlich jene konstanter Seillänge. Dann erhalten wir aus den Koordinaten durch Zeitableitung wieder die Geschwindigkeiten der Seilschwerpunkte. Vorsicht ist hier beim Aufstellen der Energien geboten. Nachdem die Knickstelle des Seils ja wandern soll, muss auch die Masse der Teilstücke sich verändern. Wir haben es also erstmals mit einer zeitabhängigen Masse in der kinetischen Energie zu tun. Diese lässt sich allerdings mit der gegebenen Seilmasse pro Längeneinheit relativ einfach aufstellen. Ähnlich gehen wir bei der potentiellen Energie vor, sodass wir schließlich die Lagrangefunktion anschreiben können. Im nächsten Schritt bestimmen wir die Bewegungsgleichungen der Seilenden und können daraus schließlich eine geschlossene Differentialgleichung bauen. Dann wollen wir aber auch noch wissen, wie sich die Geschwindigkeit der Knickstelle verhält. Durch kluge Substitution finden wir eine sehr einfache Differentialgleichung die sich mit ein wenig Aufwand lösen lässt. Schließlich erhalten wir eine sehr einfach Gleichung für die Geschwindigkeit der Knickstelle. Daran ist abzulesen was passiert, wenn wir ein Seilende erreichen. Allerdings möchte ich das hier noch nicht verraten, sondern die Spannung ein wenig aufrecht erhalten. Um das Phänomen zu erfahren das wir hier mathematisch abgeleitet haben, musst du dir schon das Video ansehen. Viel Spaß damit!

Unterstütze bitte meine Arbeit durch ein Like und eine Weiterempfehlung der Website und meines YouTube Kanals. Falls du es noch nicht getan hast, verhilfst du mir außerdem mit einem Abo zu mehr Sichtbarkeit. Vielen Dank vorab!

Viel Spaß mit diesem etwas aufwändigeren Beispiel und bis bald,
Markus

Kommentar verfassen Antwort abbrechen