Herzlich Willkommen! Die Mathematik ist die Sprache der technischen Mechanik und die Vektorrechnung ist ein wichtiger Teil davon. Wir sehen uns in diesem Beitrag an wie wir Vektoren zeitsparend anschreiben können und stoßen dabei auf die sogenannte Tensornotation. Außerdem diskutieren wir was ein Vektor überhaupt ist, was es mit Koordinatensystemen und Einheitsvektoren auf sich hat … Continue reading Notation in der Technischen Mechanik (Skalar, Vektor, Matrix, Tensor)
Seilstraffung als Stoßvorgang
Herzlich Willkommen! Wir wollen uns heute ein Beispiel ansehen bei dem zwei Stoßvorgänge hintereinander stattfinden. Der erste ist ein durch Seilstraffung ausgelöster Stoßvorgang, der zweite dann ein klassischer Stoß zwischen Kugel und Quader. Insbesondere die Seilstraffung beinhaltet ein paar interessante Gedankengänge, die wir im Detail besprechen werden. Zuerst allerdings zur Angabe: Eine Kugel mit der … Continue reading Seilstraffung als Stoßvorgang
Kreisel als Drehzahlmesser verwenden
Herzlich Willkommen! Das vorletzte der Beispiele die ich hier nachholen möchte ist ein Kreisel. Konkret wollen wir den Kreisel als Drehzahlmesser verwenden und sehen uns an wie wir das zu Stande bringen können. Die Angabe lautet: Ein Kreisel kann auch als Drehzahlmesser benutzt werden, nämlich folgendermaßen: In einem Rahmen 1 ist ein Gehäuse 2 reibungsfrei … Continue reading Kreisel als Drehzahlmesser verwenden
Prinzip von d’Alembert: Rollensystem mit Federn
Herzlich Willkommen! Heute sehen wir uns ein Beispiel zum Prinzip von d'Alembert an. Gegeben ist das nachfolgend dargestellte schwingungsfähige mechanische System, bestehend aus Rollen, Massen und Federn. Die Masse m wird gehalten und zum Zeitpunkt t=0 losgelassen. Zu Beginn sind alle Federn entspannt. Geg.: m, I, c, k, R, r Ges.: *Die Winkelkoordinaten φ1, φ2, … Continue reading Prinzip von d’Alembert: Rollensystem mit Federn
Kreiseldynamik: Mühlstein
Herzlich Willkommen! Heute wollen wir uns ein Beispiel aus dem Bereich Kreiseldynamik ansehen, und zwar folgende Mühle: Die dargestellte Mühle wird mit der Winkelgeschwindigkeit Ω=const. angetrieben. Der Mühlstein habe seinen Schwerpunkt in S, seine Masse sei m und seine Massenträgheitsmomente I1 sowie I2=I3.Ges.:*die erforderliche Winkelgeschwindigkeit ω=const., sodass der Mühlstein im Punkt P mit der Geschwindigkeit -vp e2 gleitet.*die Beschleunigung des Punktes P.*die Winkelgeschwindigkeit des Mühlsteins im e_1-e_2-e_3 Koordinatensystem.*die resultierende Einzelkraft und … Continue reading Kreiseldynamik: Mühlstein
