Herzlich Willkommen! In diesem Beitrag besprechen wir wie das Volumen eines sogenannten Parallelepipeds (Körper aus drei Vektoren) bestimmt werden kann. Dabei wenden wir das im Theorievideo zur Vektorrechnung bereits diskutierte Spatprodukt an. https://youtu.be/SZktYj0yK-c EinleitungWir haben jetzt bereits das Skalarprodukt und das Kreuzprodukt an konkreten Beispielen diskutiert und uns auch überlegt, wie wir einen Winkel zwischen … Continue reading Volumen eines Körpers aus drei Vektoren – Parallelepiped
Winkel zwischen Vektoren aus dem Skalarprodukt berechnen
Herzlich Willkommen! In unserem dritten Beispiel zur Vektorrechnung geht es darum den Winkel zwischen zwei Vektoren zu bestimmen, wenn die beiden Vektoren bekannt sind. Wir nutzen dazu die Definition des Skalarprodukts. Sehen wir uns also genauer an wie das funktioniert. https://youtu.be/KIfMU9nm0ks TheorieWir haben in der Theorie zu den Vektoren auch diskutiert, dass wir aus dem … Continue reading Winkel zwischen Vektoren aus dem Skalarprodukt berechnen
Vektorrechnung: Kreuzprodukt zweier Vektoren
Herzlich Willkommen! Diesmal behandeln wir das Kreuzprodukt zweier Vektoren und sehen uns an was es bedeutet, dass das Kreuzprodukt nicht kommutativ ist. Wir berechnen das Kreuzprodukt einerseits mittels der Determinante und andererseits als Alternative auch mit den Einheitsvektoren. https://youtu.be/d9rNQjol-f0 In unserem letzten konkreten Video zur Vektorrechnung haben wir uns mit dem Skalarprodukt beschäftigt. Heute möchten … Continue reading Vektorrechnung: Kreuzprodukt zweier Vektoren
Vektorrechnung: Allgemeines Dreieck aus Vektoren (Satz von Pythagoras)
Herzlich Willkommen! Heute sehen wir uns das erste konkrete Beispiel zur Vektorrechnung an. Wir besprechen hier wie wir ein Dreieck mittels Vektoren beschreiben und die Hypotenuse aus den beiden Katheten berechnen können. Damit wenden wir erstmals die zuletzt besprochenen Regeln der Vektorrechnung auf ein konkretes Beispiel an. Zum Schluss begegnet uns sogar eine altbekannte Regel … Continue reading Vektorrechnung: Allgemeines Dreieck aus Vektoren (Satz von Pythagoras)
Regeln für die Vektorrechnung: Skalare Multiplikation, Vektorprodukt, Spatprodukt, …
Herzlich Willkommen! Wie letzte Woche angekündigt, besprechen wir diesmal wichtige Rechenregeln für Vektoren. Insbesondere geht es um das Strecken und Stauchen sowie Addieren und Subtrahieren von Vektoren. Welche Möglichkeiten es bei der Multiplikation von Vektoren gibt, nämlich Skalarprodukt, Vektorprodukt und Spatprodukt und was eigentlich ein Ortsvektor ist sehen wir uns auch an. https://youtu.be/UExHO-j1AXA Das Transkript … Continue reading Regeln für die Vektorrechnung: Skalare Multiplikation, Vektorprodukt, Spatprodukt, …
