Stoß zweier Quader inkl. Reibung

Herzlich Willkommen!

Wir wollen uns diesmal einen Stoß zweier Quader ansehen. Bevor jedoch der Stoß passiert wird einer der beiden Quader von einer Feder angestoßen und rutscht reibungsbehaftet eine schiefe Ebene hinab. Nach dem Stoßvorgang rutschen beide Quader reibungsbehaftet weiter bis sie zum Stillstand kommen.

Der Quader A mit der Masse mA wird von einer um den Federweg x vorgespannten Feder mit Federkonstante c abgestoßen und rutscht über eine raue schiefe Ebene mit Steigungswinkel α auf eine raue horizontale Bahn mit Reibungskoeffizient μ für beide Flächen. Dort stößt der Quader A auf einen ruhenden Quader B mit der Masse mB, wobei die Stoßzahl ε beträgt.

Geg.:
mA=100kg, mB=50kg, c=4000N/m, x=0.3m, α=20°, μ=0.2, s1=10m, s2=3m, ε=0.6

Ges.:
*Geschwindigkeit beider Quader unmittelbar nach dem Stoß.
*Entfernung von der Stoßstelle in der die beiden Quader zur Ruhe kommen.

Quelle: Aufgabe D27 (S. 339f.) aus J. Berger, Klausurentrainer Technische Mechanik, 2. Auflage, 2008 Vieweg+Teubner, Wiesbaden

Die Angabe gibt es natürlich auch als Download inkl. Endergebnissen. Ihr könnt damit das Beispiel zuerst selbst rechnen und dann mit meiner Musterlösung vergleichen.

Bevor der Stoßvorgang selbst berechnet werden kann, müssen wir uns einerseits der Energieerhaltung (Federvorspannung) und andererseits dem Arbeitssatz (rutschen auf der reibungsbehafteten Fläche) bedienen. Der Stoßvorgang selbst kann entweder mittels innerem Stoßantrieb (Zerlegung des Vorgangs in zwei einzelne Quader) oder für das Gesamtsystem berechnet werden. Wir sehen uns hier beide Möglichkeiten an und vergleichen diese. Nach dem Stoßvorgang nutzen wir abermals den Arbeitssatz um die Strecken zu berechnen, welche die beiden Quader bis zum Stillstand weiterrutschen. Die Details gibt es wie immer im Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Statik: Kippen einer Scheibtruhe beim Hochheben

Herzlich Willkommen!

Heute sehen wir uns das vielleicht kürzeste jemals aufgenommene Mechanik-Beispiel an. 😉
Wir wollen bestimmen wie weit eine Scheibtruhe gekippt werden kann, bevor sie umkippt.

Die Scheibtruhe mit Inhalt hat die Masse m und den Schwerpunkt S. Bestimme den größten Neigungswinkel θ, bei dem die Scheibtruhe gerade noch nicht umkippt.

Quelle: Aufgabe 5.58 (S. 289) aus Russell C. Hibbeler, Technische Mechanik 1 Statik, 12. Auflage, 2012 Pearson GmbH, München

Es geht dabei zwar schon um das Anfertigen eines Freikörperbildes, im Endeffekt aber nur um geometrische Überlegungen anhand dieses Bildes. Daher will ich auch heute gar nicht mehr verraten, sondern auf das verlinkte Video verweisen. Dort wird – in nicht einmal 5 Minuten – hoffentlich alles klar werden. Viel Spaß damit!


Bei Fragen oder Unklarheiten freue ich mich auf eure Kommentare.

Bis bald,
Markus

Gleichgewicht: Kran hebt eine Last

Herzlich Willkommen!

Auch in diesem Beispiel geht es wieder um Statik, nämlich um die Fragestellung welche Last ein Kran maximal heben kann ohne selbst umzukippen.

Der skizzierte Kran besteht aus drei Teilen mit den Gewichtskräften G1, G2, G3 und den Schwerpunkten S1, S2, S3.

Bestimme unter Vernachlässigung des Gewichtes des Auslegers
(a) die Lagerkräfte auf jeden der vier Reifen, wenn die Last mit konstanter Geschwindigkeit gehoben wird und ein Gewichtskraft G hat.
(b) die maximale Last, die der Kran mit dem Ausleger in der dargestellten Position heben kann, ohne dass er umkippt.

Geg.: G=3200N, G1=14000N, G2=3600N, G3=6000N, a=2.5m, b=0.75m, c=2m, d=1.5m, e=0.25m

Quelle: Aufgabe 5.47 (S. 287) aus Russell C. Hibbeler, Technische Mechanik 1 Statik, 12. Auflage, 2012 Pearson GmbH, München

Den Start macht wieder ein möglichst einfaches Freikörperbild, welches aber das Problem ausreichend exakt beschreibt. Daraus lassen sich dann die Gleichgewichtsbedingungen (Momenten- und Kräftegleichgewicht) aufstellen. Wir bestimmen daraus die Normalkräfte auf die Reifen des Krans und können schließlich diese Gleichungen auch nutzen um die maximale Last zu bestimmen, die der Kran heben kann ohne zu kippen. Wie gewohnt gibt es die zugehörige Schritt für Schritt Anleitung im verlinkten Video.


Bei Fragen oder Unklarheiten kommentiert bitte gerne hier oder direkt auf YouTube. Über einen Daumen hoch und ein Abo auf YouTube freue ich mich natürlich ebenfalls. Vielen Dank für eure Unterstützung!

Bis bald,
Markus