Stoß: Kerbschlagversuch

Herzlich Willkommen!

Nach langer Pause melde ich mich nun endlich wieder mit einem neuen Beispiel zurück und werde ab sofort wieder regelmäßiger Inhalte zur Verfügung stellen. Heute starten wir mit einem Stoßproblem in das Jahr 2024.

Mit dem Pendelschlagwerk nach Skizze wird die Kerbschlagfestigkeit einer Werkstoffprobe
geprüft. Das Schlagwerk hat die Form eines Hammers. Der Stiel ist ein Stab der Länge l
und der Masse m1. Der Hammerkopf kann angenähert als homogene Kreisscheibe mit dem
Radius r und der Masse m2 aufgefasst werden. Das Schlagpendel wird aus der anfänglichen
Ruhelage unter dem Winkel ϕ0 losgelassen, trifft die Werkstoffprobe in der Senkrechten
und erreicht nach dem Stoß die Umkehrlage bei einem Winkel ϕ3.
Gegeben: m1 = 6kg, m2 = 25kg, l = 0,65m, r = 0,18m, ϕ0 = 70°, ϕ3 = 40°

Quelle: Aufgabe D28 (S. 338) aus J. Berger, Klausurentrainer Technische Mechanik, 2. Auflage, 2008 Vieweg+Teubner, Wiesbaden

Die Angabe gibt es hier wie bei allen Beispielen zum Download.

Dieses Beispiel ist deshalb interessant, weil es sich nur auf den ersten Blick als Stoßbeispiel präsentiert. In Wirklichkeit handelt es sich um ein Problem, dass komplett ohne Stoßbetrachtung berechnet werden kann. Wie das geht zeige ich im verlinkten Video detailliert. Viel Spaß damit!

Bei Fragen könnt ihr jederzeit gerne entweder hier oder auf YouTube einen Kommentar hinterlassen. Ich werde alle Kommentare wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte auch ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen und empfehlt mich gerne weiter. Vielen herzlichen Dank!

Bis bald und alles Gute,
Markus

Stoß: Qualitätskontrolle von Preiselbeeren (Rücksprungtest)

Herzlich Willkommen!

Heute sehen wir uns ein Beispiel aus der Lebensmittelverarbeitung an. Es handelt sich dabei um die Qualitätskontrolle von Preiselbeeren mittels Rücksprungtest.

Erstaunlicherweise werden Preiselbeeren zur Qualitätskontrolle einem Rücksprungtest unterworfen, wobei die Stoßziffer zwischen Beere und Aufprallebene mindestens ϵ betragen muss. Bestimme die Abmessungen d und h zur Positionierung der Schranke C so, dass nur Preiselbeeren welchen den Qualitätskriterien entsprechen in den Auffangbehälter in C gelangen. Die Früchte werden einzeln in A aus der Ruhe losgelassen.

Geg.: ϵ = 0.8, hA = 1m, tan α = 3/4

Die Angabe gibt es hier wie jedesmal zum Download.

Wir starten hier, wie so oft, mit der Energieerhaltung um die Geschwindigkeit der Preiselbeere unmittelbar vor dem Aufprall zu bestimmen. Dann ist wichtig zu beachten, dass die Unterlage als glatt angenommen wird, wir also Impulserhaltung in Tangentialrichtung und die Stoßhypothese in Normalrichtung (bezogen auf die Unterlage) ansetzen können. Mit ein wenig zusätzlicher Kinematik können wir schließlich die Komponenten der Geschwindigkeit unserer Preiselbeere unmittelbar nach dem Stoß als Funktion der Stoßziffer anschreiben. Schließlich müssen wir noch einen schiefen Wurf ansetzen um Abstand und Höhe der Barriere berechnen zu können. Damit sind wir auch schon am Ziel unserer Berechnung angelangt. Im verlinkten Video gibt es wie gewohnt sämtliche Details und Schritte ausführlich erklärt. Viel Spaß damit!

Selbstverständlich gibt es auch wieder den schriftlichen Lösungsweg als Download. Damit könnt ihr einzelne Rechenschritte leichter vergleichen.

Bei Fragen könnt ihr jederzeit gerne entweder hier oder auf YouTube einen Kommentar hinterlassen. Ich werde alle Kommentare wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte auch ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen und empfehlt mich gerne weiter. Vielen herzlichen Dank!

Bis bald und alles Gute,
Markus

Stoß: Kugel stößt exzentrisch mit Platte

Herzlich Willkommen!

Ich hatte über YouTube gefragt ob ihr auch alte Aufnahmen haben wollte und die Antwort war ein klares JA. Damit gibt es hier das erste von etlichen Beispielen die noch mit altem Equipment entstanden sind. Die Videoqualität, sowie auch die Auflösung des elektronischen Whiteboards sind nicht ideal, aber die fachlichen Inhalte sind dennoch wie gewohnt.

In diesem Beispiel geht es um den Stoß einer Kugel mit einer drehbar aufgehängten Platte.

Eine quadratische Platte der Masse mB ist gemäß Skizze bei C drehbar aufgehängt. Im Punkt E im Abstand l von der Aufhängung stößt eine Kugel (punktförmige Masse mA) mit der Geschwindigkeit vA1 gegen die anfangs ruhende Platte. Die Stoßziffer beträgt ϵ.

Geg.: mA=1.2kg, mB=3kg, a=0.6m, l=0.4m, vA1=5ms−1, ϵ=0.8

Ges.:
*Massenträgheitsmoment der Platte bezogen auf den Aufhängepunkt C
*Winkelgeschwindigkeit der Platte und Geschwindigkeit der Kugel unmittelbar nach dem Stoß *Stoßantriebe in den Punkten E und C
*Energieverlust während des Stoßvorganges
*Wie groß müsste die Geschwindigkeit vA1 der Kugel unmittelbar vor dem Stoß sein, damit sich die Platte nach dem Stoß überschlägt?

Die Angabe gibt es hier auch zum Download.

Nachdem hier der innere Stoßantrieb am Punkt E gefragt ist (c), ist es sinnvoll die beiden Stoßpartner getrennt zu betrachten. Wir schreiben also für jeden Impuls- und Drehimpulssatz an, sowie die gemeinsame Stoßhypothese. Damit und mit zwei kinematischen Überlegungen sowie den Massenträgheitsmomenten (auch die Kugel hat um C ein Massenträgheitsmoment!) haben wir bereits ein vollständiges Gleichungsystem vorliegen. Dieses können wir direkt lösen und uns danach noch Gedanken über den Energieverlust bzw. den Fall des Überschlagens machen. Die Details sind wie gewohnt im Video zu finden. Viel Spaß damit!

Selbstverständlich gibt es auch wieder den schriftlichen Lösungsweg als Download. Damit könnt ihr einzelne Rechenschritte leichter vergleichen.

Bei Fragen könnt ihr jederzeit gerne entweder hier oder auf YouTube einen Kommentar hinterlassen. Ich werde alle Kommentare wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte auch ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen und empfehlt mich gerne weiter. Vielen herzlichen Dank!

Bis bald und alles Gute,
Markus

Stoß: Verkehrsunfall auf nasser Fahrbahn

Herzlich Willkommen!

Heute wollen wir Unfallsachverständige spielen und uns folgende Situation ansehen.

Ein PKW (2) schleudert auf nasser Fahrbahn und bleibt quer stehen. Trotz Vollbremsung, also Rutschen mit Reibungskoeffizient μ1, ab der Entfernung s1 prallt der nachfolgende Wagen (1) zentrisch so stark auf, dass der Wagen (2) um die Strecke s2 weiterrutscht, wobei der Reibungskoeffizient μ2 beträgt. Die Stoßzahl ist mit ϵ gegeben.

Geg.: m1 = 2m2, μ1 = μ2 = 1/3, ε = 0.2, s1 = 50m, s2 = 10m

Berechne
*die Geschwindigkeit v0 des Wagens (1) vor dem Bremsen.
*die Geschwindigkeit v1 des Wagens (1) unmittelbar vor dem Zusammenstoß.

Quelle: Aufgabe 6.4 (S. 145) aus D. Gross et al., Formeln und Aufgaben zur Technischen Mechanik 3, 10. erweiterte Auflage, 2012 Springer-Verlag, Berlin Heidelberg

Die Angabe gibt es wie gewohnt auch zum Download.

Der Lösungsweg ist in diesem Fall recht klar. Wir wissen die Strecken s1 und s2, die Massen und Reibungskoeffizienten der PKWs und eine Stoßziffer. Damit können wir auf die Geschwindigkeit schließen, die der PKW 1 unmittelbar vor dem Zusammenstoß hatte und in weiterer Folge auf die Geschwindigkeit mit der das Bremsmanöver eingeleitet wurde. Wir verwenden dazu den Arbeitssatz für die beiden Strecken, sowie Impulsbilanz und Stoßhypothese für den Stoßvorgang selbst. Auflösen dieser Gleichungssysteme liefert dann die gesuchte Ergebnisse. Wie immer erkläre ich im Video genau worauf es bei der Berechnung ankommt. Viel Spaß damit!

Selbstverständlich gibt es auch wieder den schriftlichen Lösungsweg als Download.

Bei Fragen könnt ihr jederzeit gerne entweder hier oder auf YouTube einen Kommentar hinterlassen. Ich werde alle Kommentare wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte auch ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen und empfehlt mich gerne weiter. Vielen herzlichen Dank!

Bis bald und alles Gute,
Markus

Energiesatz: Halbzylinderschale rollt auf Unterlage

Herzlich Willkommen!

Es geht wieder einmal um den Arbeits- und Energiesatz. Wie schon bei vorhergehenden Beispielen zur Thematik eigentlich nur um den Energiesatz, denn das System ist konservativ, wie die Angabe vermuten lässt.

Eine dünne Halbzylinderschale der Masse m rollt ohne zu rutschen auf einer Ebene. Die Schale wird dabei aus der dargestellten Lage aus der Ruhe losgelassen.

Bestimme mittels Energiesatz:
*die Winkelgeschwindigkeit φ˙(φ) in Abhängigkeit der Lage φ
*den Winkel φ bei dem die Winkelgeschwindigkeit ihr Maximum erreicht.

Die Angabe als Download gibt es hier. Probiere vielleicht zuerst die Lösung selbst zu finden und schaue dir dann erst meine Musterlösung an. Das hilft in der Regel enorm beim Verständnis.

Wir haben in diesem Fall jeweils die Energien zum Startzeitpunkt sowie für eine beliebige Winkellage aufzustellen. Dafür benötigen wir zuvor die Winkelgeschwindigkeit der Halbzylinderschale (über das analytische Prinzip einfach errechenbar) sowie auch die Lage des Schwerpunkts. Außerdem wird es am einfachsten sein die kinetische Energie der Rotation zu verwenden, also brauchen wir auch noch das Massenträgheitsmoment der Schale. Ist das alles bestimmt lassen sich die Energieterme einfach hinschreiben und über Energieerhaltung miteinander verknüpfen. Damit erhalten wir direkt einen Ausdruck für die Winkelgeschwindigkeit als Funktion des Winkels selbst. Im Detail sprechen wir wieder im Video über die Lösung. Viel Spaß beim Anschauen!


Es gibt natürlich auch wieder die Musterlösung als pdf – lade es gerne herunter.

Solltest du fragen haben bitte schreibe gerne hier oder auf YouTube einen Kommentar. Mich interessiert natürlich auch was du generell zu diesem Beispiel und meiner Musterlösung sagst. Gerne jederzeit melden.

Wenn dir die Website und mein YouTube Kanal weiterhelfen, dann lass mir auch gerne ein Abo da und gib die Links an deine Studienkolleg*innen weiter.

Alles Gute, viel Spaß und bis bald,
Markus

Stoß: Projektil trifft auf Scheibe

Herzlich Willkommen!

Wir widmen uns wieder einem Stoßbeispiel. Dieses Mal geht es um ein Projektil das auf eine aufgehängte Scheibe auftrifft und in diese eindringt.

Ein Projektil der Masse mP dringt mit der Geschwindigkeit vP in die Mantelfläche einer Scheibe der Masse mS unter dem Winkel α zur Horizontalen ein. Unmittelbar vor dem Stoß befindet sich die Scheibe in Ruhe.

Geg.: mP = 7g, mS = 5kg, vP = 800m/s, r = 0.2m, α = 30°

Ges.:
*die Winkelgeschwindigkeit ω′S der Scheibe unmittelbar nach dem Eindringen des Projektils.
*der Winkel θ um den die Scheibe schwingt bis sie ihren Umkehrpunkt erreicht hat.

Quelle: Aufgabe x.x (S. xxx) aus Russell C. Hibbeler, Technische Mechanik 3 Dynamik, 12. Auflage, 2012 Pearson GmbH, München

Die Angabe gibt es wie gewohnt auch zum Download.

In diesem Fall bevorzuge ich die Zerlegung des Systems in Projektil und Scheibe und die Einführung eines inneren Stoßantriebs. So können wir einen Impulssatz für das Projektil anschreiben, das wir als Punktmasse betrachten dürfen. Andererseits lässt sich für die Scheibe ein Drehimpulssatz um das Lager aufstellen. Zusätzlich benötigen wir natürlich noch eine kinematische Bedingungen. Diese ist hier jene des rauen Stoßes, also gleiche Geschwindigkeitsvektoren von Projektil und Eindringpunkt unmittelbar nach dem Stoßvorgang. Damit lässt sich dann die Winkelgeschwindigkeit der Scheibe bestimmen. Schließlich können wir über eine einfach Energiebetrachtung noch den Umkehrpunkt der Schwingung bestimmen. Wie das geht besprechen wir im verlinkten Video im Detail. Viel Spaß damit!

Wie auch schon die letzten Male stelle ich zusätzlich wieder ein pdf mit dem vollständigen Lösungsweg zur Verfügung.

Bei Fragen könnt ihr jederzeit gerne entweder hier oder auf YouTube einen Kommentar hinterlassen. Ich werde alle Kommentare wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte auch ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen und empfehlt mich gerne weiter. Vielen herzlichen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Energiesatz: Rollendes Rad an Feder (Schwingung)

Herzlich Willkommen!

Es geht wieder einmal um den Arbeits- und Energiesatz. Wie schon beim letzten Beispiel zu diesem Thema eigentlich nur um den Energiesatz, denn das System ist konservativ, wie die folgende Angabe zeigt.

Ein Rad mit der Masse m und dem Trägheitsradius is rollt ohne zu gleiten. Im entspannten Zustand hat die Feder die Länge l0 und die Federkonstante c. In der skizzierten Position wird das Rad aus der Ruhe freigegeben.
Geg.: m = 60 kg, is = 0.6 m, r = 1 m, l = 3 m, l0 = 0.5 m, c = 10 N/m, β = 60°

Ges.:
*der allgemeine Ausdruck für die Winkelgeschwindigkeit ω des Rades, nachdem es sich um den Winkel β im Uhrzeigersinn verdreht hat.
*der Zahlenwert für diese Winkelgeschwindigkeit ω.

Die Angabe gibt es natürlich wie gewohnt hier als Download.

Die Lösung dieses Beispiels ist an sich recht kurz, erfordert aber einige Überlegungen zur Geometrie. So müssen wir uns insbesondere Gedanken darüber machen wie sich die Federlänge in Abhängigkeit von der Rollbewegung des Rades ändert. Wenn das erledigt ist und wir uns für eine Betrachtung am Momentanpol des Rades entscheiden, ist alles weitere schnell aufgeschrieben. Es gibt in diesem Fall nur eine kinetische Energie der Rotation und die potentiellen Energien der Feder zu Beginn und am Ende. Damit lässt sich leicht die Winkelgeschwindigkeit des Rades als Funktion des Drehwinkels bestimmen. Die Details dazu findest du wie gehabt im verlinkten Video.


Ich beginne ab diesem Beispiel auch damit pdf-Dateien des Lösungsweges bereitzustellen. Falls das für dich interessant ist, hinterlasse mir gerne einen Kommentar, dann kann ich gerne auch bei schon besprochenen Beispielen solche pdfs nachreichen.

Sollten Fragen auftauchen oder ihr Anmerkungen haben, dann zögert bitte nicht mir hier oder auf YouTube einen Kommentar zu hinterlassen. Ich freue mich immer auf eure Rückmeldungen und beantworte sämtlichen Fragen schnell und gerne.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte unbedingt auch ein Like auf YouTube da und abonniert diesen Blog. Außerdem freue ich mich über ein Abo meines YouTube Kanals! Ihr helft mir damit enorm. Vielen Dank!

Viel Spaß mit dem Beispiel und bis bald,
Markus

Unelastischer Stoß: Punktmasse bleibt in Quader stecken

Herzlich Willkommen!

Im Stoßbeispiel, dass wir uns für heute vornehmen möchten, geht es um ein physikalisches Pendel mit einer Pendelkugel. Diese Pendelkugel wird aus der Ruhe losgelassen und trifft am tiefsten Punkt an eine Wand. Der Stoßvorgang selbst hat dabei eine definierte Stoßziffer ε, ist also weder vollkommen elastisch noch vollkommen plastisch.

Eine Masse m2 stößt vollkommen unelastisch mit der Geschwindigkeit v2 gegen eine ruhende Masse m1, die an zwei gleichlangen, masselosen Pendelstützen aufgehängt ist und verbleibt in ihr. Aus dem Maximalausschlag φ=α soll auf die Geschwindigkeit v2 geschlossen werden, wobei die Wirkungslinie von v2 durch den Schwerpunkt von m1 geht.

Ges.:
*Geschwindigkeit der Massen nach dem Stoß.
*Zusammenhang zwischen dem Winkel α der Umkehrlage und v2
*Energieverlust während dem Stoß

Die Angabe gibt es wie gewohnt zum Download. Somit könnt ihr das Beispiel zuerst selbst rechnen und dann mit der Musterlösung vergleichen.

Zur Lösung dieses Beispiels verwenden wir für den Stoßvorgang selbst eine reine Impulsbilanz, die wir für das Gesamtsystem aufstellen. Nachdem es sich um einen zentrischen Stoß handelt, reicht uns diese Impulsbilanz aus um einen Zusammenhang zwischen der Geschwindigkeit unmittelbar nach dem Stoß mit jener unmittelbar vor dem Stoß herzustellen. Zur Ermittlung des gesuchten Zusammenhangs zwischen der Geschwindigkeit v2 der Punktmasse vor dem Stoß und dem Maximalausschlag der Gesamtmasse danach setzen wir anschließend eine Energieerhaltung an, weil der Schwingvorgang nach dem Stoß ohne Energieverlust passiert. Schließlich können wir den Energieverlust der während des Stoßvorgangs selbst auftritt mittels einer Energiebilanz zwischen den Zeitpunkten unmittelbar vor und unmittelbar nach dem Stoß berechnen. Die Details und weitere Anmerkungen zum Beispiel findet ihr wie immer im verlinkten Video. Viel Freude dabei!

Bei Fragen könnt ihr jederzeit gerne entweder hier oder auf YouTube einen Kommentar hinterlassen. Ich werde alle Kommentare wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte auch ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen und empfehlt mich gerne weiter. Vielen herzlichen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Stoß: Physikalisches Pendel trifft auf Wand

Herzlich Willkommen!

Im Stoßbeispiel, dass wir uns für heute vornehmen möchten, geht es um ein physikalisches Pendel mit einer Pendelkugel. Diese Pendelkugel wird aus der Ruhe losgelassen und trifft am tiefsten Punkt an eine Wand. Der Stoßvorgang selbst hat dabei eine definierte Stoßziffer ε, ist also weder vollkommen elastisch noch vollkommen plastisch.

Das abgebildete Pendel besteht aus einer Vollkugel mit Radius r und Masse mK und einem schlanken Stab mit Länge l und Masse mS. Ein Ende des Stabes ist in A mit Abstand r zur Wand frei drehbar gelagert. Das Pendel wird in der Winkellage θ=θ1 aus der Ruhe freigegeben. Die Stoßziffer ist ε.

Geg.: mK=50kg,mS=20kg,l=2m,r=0.3m,ε=0.6,θ1=0∘

Bestimme den Winkel θ=θ2, bis zu dem das Pendel zurückschwingt nachdem es an der Wand angestoßen ist.

Quelle: Aufgabe 8.52 (S. 582) aus Russell C. Hibbeler, Technische Mechanik 3 Dynamik, 2012 Pearson Deutschland GmbH

Die Angabe gibt es wie gewohnt zum Download. Somit könnt ihr das Beispiel zuerst selbst rechnen und dann mit der Musterlösung vergleichen.

Wir können in diesem Fall die Winkelgeschwindigkeit des Pendels unmittelbar vor dem Stoß mittels Energieerhaltung sehr einfach berechnen. Für den Stoßvorgang selbst ist dann nur noch die Newton’sche Stoßhypothese – also das Verhältnis aus relativer Trennungsgeschwindigkeit zu relativer Annäherungsgeschwindigkeit – relevant, sowie eine kinematische Überlegung aus der wir die Geschwindigkeiten am Stoßpunkt selbst erhalten. Damit lässt sich die Winkelgeschwindigkeit des Pendels unmittelbar nach dem Stoß berechnen. Zum Schluss können wir dann wieder Energieerhaltung anwenden und damit bestimmen wie weit das Pendel zurückschwingt. Schritt für Schritt und anschaulich erklärt gibt es das ganze wieder im verlinkten Video. Viel Spaß dabei!

Bei Fragen könnt ihr jederzeit gerne entweder hier oder auf YouTube einen Kommentar hinterlassen. Ich werde alle Kommentare wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte auch ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen und empfehlt mich gerne weiter. Vielen herzlichen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Arbeitssatz: Massen mit Rolle und Seil

Herzlich Willkommen!

In diesem Beispiel zum Arbeitssatz sehen wir uns ein Beispiel an, das normalerweise oft mit Schwerpunkt- und Drehimpulssatz gerechnet wird. Hier haben wir es aber zusätzlich auch noch mit Reibung zu tun.

Ein über eine Rolle geführtes Seil verbindet zwei Körper mit den Massen m1 und m2 miteinander. Die Masse m1 ist dabei größer als die Masse m2. Es tritt kein Schlupf auf.

Geg.: Θ0, m1, m2, μ

Bestimme die Geschwindigkeit beider Körper in Abhängigkeit vom Ort, wenn das System aus der Ruhe losgelassen wird.

Die Angabe gibt es wie üblich hier zum Download.

Wir beginnen auch hier wieder mit einem Freikörperbild. Darin vermerken wir nicht nur die Kräfte, sondern auch alle dynamische Größen, d.h. Geschwindigkeiten und Winkelgeschwindigkeiten im System. Danach können wir direkt den Arbeitssatz aufstellen. Die Kinematik im System, also die Abrollbedingung, hilft uns, auch die Winkelgeschwindigkeit als Funktion der translatorischen Geschwindigkeit der Massen auszudrücken. Natürlich müssen wir in diesem Beispiel auch den Reibungseinfluss im Arbeitssatz berücksichtigen, also die Reibkraft zwischen schiefer Ebene und Klotz bestimmen. Die Geschwindigkeit der Massen als Funktion des Ortes lässt sich nach sinnvollem Umformen des Arbeitssatzes dann direkt aus diesem bestimmen. Schritt für Schritt erkläre ich den gesamten Rechenweg im verlinkten Video. Viel Spaß bei der Bearbeitung!

Sollten Fragen auftauchen oder ihr Anmerkungen haben, dann zögert bitte nicht mir hier oder auf YouTube einen Kommentar zu hinterlassen. Ich freue mich immer auf eure Rückmeldungen und beantworte sämtlichen Fragen schnell und gerne.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte unbedingt auch ein Like auf YouTube da und abonniert diesen Blog. Außerdem freue ich mich über ein Abo meines YouTube Kanals! Ihr helft mir damit enorm. Vielen Dank!

Viel Spaß mit dem Beispiel und bis bald,
Markus