Stoß: Kerbschlagversuch

Herzlich Willkommen!

Nach langer Pause melde ich mich nun endlich wieder mit einem neuen Beispiel zurück und werde ab sofort wieder regelmäßiger Inhalte zur Verfügung stellen. Heute starten wir mit einem Stoßproblem in das Jahr 2024.

Mit dem Pendelschlagwerk nach Skizze wird die Kerbschlagfestigkeit einer Werkstoffprobe
geprüft. Das Schlagwerk hat die Form eines Hammers. Der Stiel ist ein Stab der Länge l
und der Masse m1. Der Hammerkopf kann angenähert als homogene Kreisscheibe mit dem
Radius r und der Masse m2 aufgefasst werden. Das Schlagpendel wird aus der anfänglichen
Ruhelage unter dem Winkel ϕ0 losgelassen, trifft die Werkstoffprobe in der Senkrechten
und erreicht nach dem Stoß die Umkehrlage bei einem Winkel ϕ3.
Gegeben: m1 = 6kg, m2 = 25kg, l = 0,65m, r = 0,18m, ϕ0 = 70°, ϕ3 = 40°

Quelle: Aufgabe D28 (S. 338) aus J. Berger, Klausurentrainer Technische Mechanik, 2. Auflage, 2008 Vieweg+Teubner, Wiesbaden

Die Angabe gibt es hier wie bei allen Beispielen zum Download.

Dieses Beispiel ist deshalb interessant, weil es sich nur auf den ersten Blick als Stoßbeispiel präsentiert. In Wirklichkeit handelt es sich um ein Problem, dass komplett ohne Stoßbetrachtung berechnet werden kann. Wie das geht zeige ich im verlinkten Video detailliert. Viel Spaß damit!

Bei Fragen könnt ihr jederzeit gerne entweder hier oder auf YouTube einen Kommentar hinterlassen. Ich werde alle Kommentare wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte auch ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen und empfehlt mich gerne weiter. Vielen herzlichen Dank!

Bis bald und alles Gute,
Markus

Prinzip von d’Alembert: Rollen & Walzen

Herzlich Willkommen!

Es gab schon längere Zeit kein Beispiel zum Prinzip von d’Alembert. Das wollen wir diesmal ändern.

Gegeben sei das skizzierte System aus Rollen und Massen.

Ges.:
*sämtliche Bewegungsgleichungen des Systems.
*die Beschleunigung der Masse 5m.

Die Angabe gibt es natürlich wieder als Download, damit du das Beispiel vorab selbst rechnen kannst.

In diesem Fall ist zwar sehr einfach aufzustellen welche Koordinaten und Zwangsbedingungen notwendig sind, die Rechnung selbst ist aber etwas aufwändiger. Typischerweise lösen wir ein solches Problem, indem wir das Prinzip von d’Alembert allgemein anschreiben und dann die Zwangsbedingungen einsetzen. Nachdem die Dynamik der Masse 5m gesucht ist, sollten wir lediglich darauf achten die Koordinaten dieser Masse in unseren Gleichungen zu behalten. Anschließend lassen sich mittels Koeffizientenvergleich und auflösen des entstehenden Gleichungssystems direkt die Beschleunigungen der Massen – insbesondere der Masse 5m – bestimmen. Das und noch einige zusätzliche Erklärungen und Nebenbemerkungen findest du im verlinkten YouTube Video. Viel Spaß damit!

Auch die Musterlösung stelle ich, wie gewohnt, als pdf zum Download zur Verfügung.

Wenn ihr Fragen habt schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen schnellstmöglich beantworten.

Hat euch das Video gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Alles Gute und bis bald,
Markus

Stoß: Qualitätskontrolle von Preiselbeeren (Rücksprungtest)

Herzlich Willkommen!

Heute sehen wir uns ein Beispiel aus der Lebensmittelverarbeitung an. Es handelt sich dabei um die Qualitätskontrolle von Preiselbeeren mittels Rücksprungtest.

Erstaunlicherweise werden Preiselbeeren zur Qualitätskontrolle einem Rücksprungtest unterworfen, wobei die Stoßziffer zwischen Beere und Aufprallebene mindestens ϵ betragen muss. Bestimme die Abmessungen d und h zur Positionierung der Schranke C so, dass nur Preiselbeeren welchen den Qualitätskriterien entsprechen in den Auffangbehälter in C gelangen. Die Früchte werden einzeln in A aus der Ruhe losgelassen.

Geg.: ϵ = 0.8, hA = 1m, tan α = 3/4

Die Angabe gibt es hier wie jedesmal zum Download.

Wir starten hier, wie so oft, mit der Energieerhaltung um die Geschwindigkeit der Preiselbeere unmittelbar vor dem Aufprall zu bestimmen. Dann ist wichtig zu beachten, dass die Unterlage als glatt angenommen wird, wir also Impulserhaltung in Tangentialrichtung und die Stoßhypothese in Normalrichtung (bezogen auf die Unterlage) ansetzen können. Mit ein wenig zusätzlicher Kinematik können wir schließlich die Komponenten der Geschwindigkeit unserer Preiselbeere unmittelbar nach dem Stoß als Funktion der Stoßziffer anschreiben. Schließlich müssen wir noch einen schiefen Wurf ansetzen um Abstand und Höhe der Barriere berechnen zu können. Damit sind wir auch schon am Ziel unserer Berechnung angelangt. Im verlinkten Video gibt es wie gewohnt sämtliche Details und Schritte ausführlich erklärt. Viel Spaß damit!

Selbstverständlich gibt es auch wieder den schriftlichen Lösungsweg als Download. Damit könnt ihr einzelne Rechenschritte leichter vergleichen.

Bei Fragen könnt ihr jederzeit gerne entweder hier oder auf YouTube einen Kommentar hinterlassen. Ich werde alle Kommentare wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte auch ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen und empfehlt mich gerne weiter. Vielen herzlichen Dank!

Bis bald und alles Gute,
Markus

Gyro: Roller mill

Herzlich Willkommen!

Wir fügen wieder einmal ein Kreiselbeispiel zu unserem Repertoire hinzu. Diesmal geht es um eine der klassischsten Anwendung der Kreiseldynamik, nämlich eine Kollermühle. Wie ihr wahrscheinlich wisst, wird dieses Gerät in der Zerkleinerungstechnik (z.B. um Mehl zu mahlen) verwendet. Warum das überhaupt funktioniert, sollte das heutige Beispiel sehr anschaulich zeigen.

Eine Kollermühle besteht aus einer drehbar gelagerten, dünnen Kreisscheibe (Masse m, Radius ρ0), die über einen masselosen Stab der Länge l=2ρ0 aus der Ruhelage mit konstanter Winkelbeschleunigung α beschleunigt wird, wobei gilt ω0(t)=αt.

Bestimme für reines Rollen zwischen Scheibe und Unterlage:
*das erforderliche äußere Moment M im mit der Scheibe mitrotierenden körperfesten Koordinatensystem e–1-e–2-e–3.
*die Zeit t1, bei der die Anpresskraft zwischen Scheibe und Unterlage FN=2mg beträgt.
*den erforderlichen minimalen Reibungskoeffizienten μ zwischen Scheibe und Unterlage, sodass während des gesamten Beschleunigungsvorganges reines Rollen sichergestellt ist.

Die Angabe zum Download gibt es wie gewohnt hier:

Wir können hier laut Angabe davon ausgehen, dass die Stange masselos ist, weil sie als sehr leicht im Vergleich zur Kreisscheibe angenommen wird. Daher reicht es aus, die relevanten Gleichungen für die Scheibe – allerdings im gegebenen e1-e2-e3-Koordinatensystem – anzuschreiben. Wir benötigen also den Drehimpulssatz der Scheibe. Damit wir diesen aufstellen können, brauchen wir wiederum die Winkelgeschwindigkeit und den Trägheitstensor der Kreisscheibe. Aus dem fertigen Drehimpulssatz lässt sich schließlich sowohl die gesuchte Zeit t1, als auch der minimal notwendige Reibungskoeffizient zwischen Scheibe und Unterlage bestimmen, sodass wir jederzeit reines Rollen haben. Wie immer findest du alle Details im verlinkten Video.

Für diejenigen unter euch die lieber lesen als ein Video anzuschauen gibt es das pdf der fertigen Rechnung hier zum Download.

Bei Fragen meldet euch sehr gerne jederzeit bei mir. Ich versuche alles schnellstmöglich zu beantworten.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald,
Markus

Stoß: Kugel stößt exzentrisch mit Platte

Herzlich Willkommen!

Ich hatte über YouTube gefragt ob ihr auch alte Aufnahmen haben wollte und die Antwort war ein klares JA. Damit gibt es hier das erste von etlichen Beispielen die noch mit altem Equipment entstanden sind. Die Videoqualität, sowie auch die Auflösung des elektronischen Whiteboards sind nicht ideal, aber die fachlichen Inhalte sind dennoch wie gewohnt.

In diesem Beispiel geht es um den Stoß einer Kugel mit einer drehbar aufgehängten Platte.

Eine quadratische Platte der Masse mB ist gemäß Skizze bei C drehbar aufgehängt. Im Punkt E im Abstand l von der Aufhängung stößt eine Kugel (punktförmige Masse mA) mit der Geschwindigkeit vA1 gegen die anfangs ruhende Platte. Die Stoßziffer beträgt ϵ.

Geg.: mA=1.2kg, mB=3kg, a=0.6m, l=0.4m, vA1=5ms−1, ϵ=0.8

Ges.:
*Massenträgheitsmoment der Platte bezogen auf den Aufhängepunkt C
*Winkelgeschwindigkeit der Platte und Geschwindigkeit der Kugel unmittelbar nach dem Stoß *Stoßantriebe in den Punkten E und C
*Energieverlust während des Stoßvorganges
*Wie groß müsste die Geschwindigkeit vA1 der Kugel unmittelbar vor dem Stoß sein, damit sich die Platte nach dem Stoß überschlägt?

Die Angabe gibt es hier auch zum Download.

Nachdem hier der innere Stoßantrieb am Punkt E gefragt ist (c), ist es sinnvoll die beiden Stoßpartner getrennt zu betrachten. Wir schreiben also für jeden Impuls- und Drehimpulssatz an, sowie die gemeinsame Stoßhypothese. Damit und mit zwei kinematischen Überlegungen sowie den Massenträgheitsmomenten (auch die Kugel hat um C ein Massenträgheitsmoment!) haben wir bereits ein vollständiges Gleichungsystem vorliegen. Dieses können wir direkt lösen und uns danach noch Gedanken über den Energieverlust bzw. den Fall des Überschlagens machen. Die Details sind wie gewohnt im Video zu finden. Viel Spaß damit!

Selbstverständlich gibt es auch wieder den schriftlichen Lösungsweg als Download. Damit könnt ihr einzelne Rechenschritte leichter vergleichen.

Bei Fragen könnt ihr jederzeit gerne entweder hier oder auf YouTube einen Kommentar hinterlassen. Ich werde alle Kommentare wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte auch ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen und empfehlt mich gerne weiter. Vielen herzlichen Dank!

Bis bald und alles Gute,
Markus

Kreisel: Rotor in rotierender Gabel

Herzlich Willkommen!

Kreiseldynamik ist derzeit noch eine recht unterrepräsentierte Spezies hier auf der Website. Dies soll sich im Laufe der Zeit ändern, daher gibt es heute wieder einmal ein Kreiselbeispiel mit folgender Angabe.

In einer Gabel, die mit der konstanten Winkelgeschwindigkeit Ω rotiert, ist ein Rotor gelagert, der sich seinerseits mit der konstanten Winkelgeschwindigkeit ωr relativ zur Gabel dreht. Der Rotor besitzt die Hauptträgheitsmomente: Ix = Iy = Iz = I und das Gewicht G. Für die Gabel sind die Abmessungen l1, l2 und l gegeben.

Errechne im gabelfesten xyz−System:
*den Drehimpuls des Rotors bezüglich S.
*die Auflagerkräfte in C und D.
*die Auflagerkräfte in A und B zufolge des Rotors.

Quelle: Aufgabe 4.4.1 (S. 41) aus P. Lugner et al., Technische Mechanik, 1992 Springer-Verlag, Wien

Die Angabe zum Download gibt es wie gewohnt hier:

Es handelt sich in diesem Fall um ein relativ simples Kreiselbeispiel. Nachdem die Rotationen von Rotor und Gabel normal zueinander stehen ergibt sich ein kompakter Drehimpulsvektor, der wiederum zu einem sehr kompakten Drehimpulssatz führt. Anschließend benötigen wir noch den Schwerpunktsatz als zweite Gleichung, der allerdings auch zum Kräftegleichgewicht wird, weil es keine Schwerpunktsbewegung gibt. Damit lassen sich schon alle vier Lagerreaktionen berechnen. Die Schritt-für-Schritt Erklärung findet ihr im Video. Viel Spaß damit.

Für diejenigen unter euch die wieder lieber lesen als ein Video zu schauen gibt es das pdf der fertigen Rechnung.

Sämtliche Fragen beantworte ich wie immer sehr gerne – schreibt sie mir bitte einfach hier oder auf YouTube als Kommentar.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald,
Markus

Stoß: Verkehrsunfall auf nasser Fahrbahn

Herzlich Willkommen!

Heute wollen wir Unfallsachverständige spielen und uns folgende Situation ansehen.

Ein PKW (2) schleudert auf nasser Fahrbahn und bleibt quer stehen. Trotz Vollbremsung, also Rutschen mit Reibungskoeffizient μ1, ab der Entfernung s1 prallt der nachfolgende Wagen (1) zentrisch so stark auf, dass der Wagen (2) um die Strecke s2 weiterrutscht, wobei der Reibungskoeffizient μ2 beträgt. Die Stoßzahl ist mit ϵ gegeben.

Geg.: m1 = 2m2, μ1 = μ2 = 1/3, ε = 0.2, s1 = 50m, s2 = 10m

Berechne
*die Geschwindigkeit v0 des Wagens (1) vor dem Bremsen.
*die Geschwindigkeit v1 des Wagens (1) unmittelbar vor dem Zusammenstoß.

Quelle: Aufgabe 6.4 (S. 145) aus D. Gross et al., Formeln und Aufgaben zur Technischen Mechanik 3, 10. erweiterte Auflage, 2012 Springer-Verlag, Berlin Heidelberg

Die Angabe gibt es wie gewohnt auch zum Download.

Der Lösungsweg ist in diesem Fall recht klar. Wir wissen die Strecken s1 und s2, die Massen und Reibungskoeffizienten der PKWs und eine Stoßziffer. Damit können wir auf die Geschwindigkeit schließen, die der PKW 1 unmittelbar vor dem Zusammenstoß hatte und in weiterer Folge auf die Geschwindigkeit mit der das Bremsmanöver eingeleitet wurde. Wir verwenden dazu den Arbeitssatz für die beiden Strecken, sowie Impulsbilanz und Stoßhypothese für den Stoßvorgang selbst. Auflösen dieser Gleichungssysteme liefert dann die gesuchte Ergebnisse. Wie immer erkläre ich im Video genau worauf es bei der Berechnung ankommt. Viel Spaß damit!

Selbstverständlich gibt es auch wieder den schriftlichen Lösungsweg als Download.

Bei Fragen könnt ihr jederzeit gerne entweder hier oder auf YouTube einen Kommentar hinterlassen. Ich werde alle Kommentare wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte auch ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen und empfehlt mich gerne weiter. Vielen herzlichen Dank!

Bis bald und alles Gute,
Markus

Energiesatz: Halbzylinderschale rollt auf Unterlage

Herzlich Willkommen!

Es geht wieder einmal um den Arbeits- und Energiesatz. Wie schon bei vorhergehenden Beispielen zur Thematik eigentlich nur um den Energiesatz, denn das System ist konservativ, wie die Angabe vermuten lässt.

Eine dünne Halbzylinderschale der Masse m rollt ohne zu rutschen auf einer Ebene. Die Schale wird dabei aus der dargestellten Lage aus der Ruhe losgelassen.

Bestimme mittels Energiesatz:
*die Winkelgeschwindigkeit φ˙(φ) in Abhängigkeit der Lage φ
*den Winkel φ bei dem die Winkelgeschwindigkeit ihr Maximum erreicht.

Die Angabe als Download gibt es hier. Probiere vielleicht zuerst die Lösung selbst zu finden und schaue dir dann erst meine Musterlösung an. Das hilft in der Regel enorm beim Verständnis.

Wir haben in diesem Fall jeweils die Energien zum Startzeitpunkt sowie für eine beliebige Winkellage aufzustellen. Dafür benötigen wir zuvor die Winkelgeschwindigkeit der Halbzylinderschale (über das analytische Prinzip einfach errechenbar) sowie auch die Lage des Schwerpunkts. Außerdem wird es am einfachsten sein die kinetische Energie der Rotation zu verwenden, also brauchen wir auch noch das Massenträgheitsmoment der Schale. Ist das alles bestimmt lassen sich die Energieterme einfach hinschreiben und über Energieerhaltung miteinander verknüpfen. Damit erhalten wir direkt einen Ausdruck für die Winkelgeschwindigkeit als Funktion des Winkels selbst. Im Detail sprechen wir wieder im Video über die Lösung. Viel Spaß beim Anschauen!


Es gibt natürlich auch wieder die Musterlösung als pdf – lade es gerne herunter.

Solltest du fragen haben bitte schreibe gerne hier oder auf YouTube einen Kommentar. Mich interessiert natürlich auch was du generell zu diesem Beispiel und meiner Musterlösung sagst. Gerne jederzeit melden.

Wenn dir die Website und mein YouTube Kanal weiterhelfen, dann lass mir auch gerne ein Abo da und gib die Links an deine Studienkolleg*innen weiter.

Alles Gute, viel Spaß und bis bald,
Markus

Stoß: Projektil trifft auf Scheibe

Herzlich Willkommen!

Wir widmen uns wieder einem Stoßbeispiel. Dieses Mal geht es um ein Projektil das auf eine aufgehängte Scheibe auftrifft und in diese eindringt.

Ein Projektil der Masse mP dringt mit der Geschwindigkeit vP in die Mantelfläche einer Scheibe der Masse mS unter dem Winkel α zur Horizontalen ein. Unmittelbar vor dem Stoß befindet sich die Scheibe in Ruhe.

Geg.: mP = 7g, mS = 5kg, vP = 800m/s, r = 0.2m, α = 30°

Ges.:
*die Winkelgeschwindigkeit ω′S der Scheibe unmittelbar nach dem Eindringen des Projektils.
*der Winkel θ um den die Scheibe schwingt bis sie ihren Umkehrpunkt erreicht hat.

Quelle: Aufgabe x.x (S. xxx) aus Russell C. Hibbeler, Technische Mechanik 3 Dynamik, 12. Auflage, 2012 Pearson GmbH, München

Die Angabe gibt es wie gewohnt auch zum Download.

In diesem Fall bevorzuge ich die Zerlegung des Systems in Projektil und Scheibe und die Einführung eines inneren Stoßantriebs. So können wir einen Impulssatz für das Projektil anschreiben, das wir als Punktmasse betrachten dürfen. Andererseits lässt sich für die Scheibe ein Drehimpulssatz um das Lager aufstellen. Zusätzlich benötigen wir natürlich noch eine kinematische Bedingungen. Diese ist hier jene des rauen Stoßes, also gleiche Geschwindigkeitsvektoren von Projektil und Eindringpunkt unmittelbar nach dem Stoßvorgang. Damit lässt sich dann die Winkelgeschwindigkeit der Scheibe bestimmen. Schließlich können wir über eine einfach Energiebetrachtung noch den Umkehrpunkt der Schwingung bestimmen. Wie das geht besprechen wir im verlinkten Video im Detail. Viel Spaß damit!

Wie auch schon die letzten Male stelle ich zusätzlich wieder ein pdf mit dem vollständigen Lösungsweg zur Verfügung.

Bei Fragen könnt ihr jederzeit gerne entweder hier oder auf YouTube einen Kommentar hinterlassen. Ich werde alle Kommentare wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte auch ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen und empfehlt mich gerne weiter. Vielen herzlichen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Energiesatz: Rollendes Rad an Feder (Schwingung)

Herzlich Willkommen!

Es geht wieder einmal um den Arbeits- und Energiesatz. Wie schon beim letzten Beispiel zu diesem Thema eigentlich nur um den Energiesatz, denn das System ist konservativ, wie die folgende Angabe zeigt.

Ein Rad mit der Masse m und dem Trägheitsradius is rollt ohne zu gleiten. Im entspannten Zustand hat die Feder die Länge l0 und die Federkonstante c. In der skizzierten Position wird das Rad aus der Ruhe freigegeben.
Geg.: m = 60 kg, is = 0.6 m, r = 1 m, l = 3 m, l0 = 0.5 m, c = 10 N/m, β = 60°

Ges.:
*der allgemeine Ausdruck für die Winkelgeschwindigkeit ω des Rades, nachdem es sich um den Winkel β im Uhrzeigersinn verdreht hat.
*der Zahlenwert für diese Winkelgeschwindigkeit ω.

Die Angabe gibt es natürlich wie gewohnt hier als Download.

Die Lösung dieses Beispiels ist an sich recht kurz, erfordert aber einige Überlegungen zur Geometrie. So müssen wir uns insbesondere Gedanken darüber machen wie sich die Federlänge in Abhängigkeit von der Rollbewegung des Rades ändert. Wenn das erledigt ist und wir uns für eine Betrachtung am Momentanpol des Rades entscheiden, ist alles weitere schnell aufgeschrieben. Es gibt in diesem Fall nur eine kinetische Energie der Rotation und die potentiellen Energien der Feder zu Beginn und am Ende. Damit lässt sich leicht die Winkelgeschwindigkeit des Rades als Funktion des Drehwinkels bestimmen. Die Details dazu findest du wie gehabt im verlinkten Video.


Ich beginne ab diesem Beispiel auch damit pdf-Dateien des Lösungsweges bereitzustellen. Falls das für dich interessant ist, hinterlasse mir gerne einen Kommentar, dann kann ich gerne auch bei schon besprochenen Beispielen solche pdfs nachreichen.

Sollten Fragen auftauchen oder ihr Anmerkungen haben, dann zögert bitte nicht mir hier oder auf YouTube einen Kommentar zu hinterlassen. Ich freue mich immer auf eure Rückmeldungen und beantworte sämtlichen Fragen schnell und gerne.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte unbedingt auch ein Like auf YouTube da und abonniert diesen Blog. Außerdem freue ich mich über ein Abo meines YouTube Kanals! Ihr helft mir damit enorm. Vielen Dank!

Viel Spaß mit dem Beispiel und bis bald,
Markus