Inelastischer Stoß: Kugel – Stab

Herzlich Willkommen!

Unser nächstes Stoßbeispiel behandelt einen inelastischen Stoß zwischen einer Kugel und einem Stab bzw. Balken.

Eine Punktmasse m1 trifft mit der Geschwindigkeit v auf einen in A reibungsfrei drehbar gelagerten Balken auf. Der Stoß sei vollkommen unelastisch.

Geg.:
Masse 1: m1, v
Stab: s, l, Masse m2, Trägheitsmoment IA bezüglich A.

Ges.:
*Winkelgeschwindigkeit ω′ des Stabes unmittelbar nach dem Stoß.
*Stoßantrieb im Lager A.
*Endausschlagwinkel ϕE, wenn sich die Punktmasse und der Balken nach dem Stoß nicht trennen.
*Energieverlust beim Stoß.

Quelle: Aufgabe 4.6.2 (S. 48) aus P. Lugner et al., Technische Mechanik, 1992 Springer, Wien

Die Angabe gibt es natürlich auch als Download inkl. Endergebnissen. Ihr könnt damit das Beispiel zuerst selbst rechnen und dann mit meiner Musterlösung vergleichen.

Ausnahmsweise beinhaltet hier die Angabeskizze bereits alle relevanten Größen, mit Ausnahme des Stoßantriebs im Lager. Wir können also direkt darauf zurückgreifen und mittels Impuls- und Drehimpulssatz sowie weniger Überlegungen zur Kinematik, sowohl die Winkelgeschwindigkeit nach dem Stoß als auch den Stoßantrieb im Lager berechnen. Anschließend lassen sich der Endausschlagswinkel und der Energieverlust beim Stoß durch einfache Energiebilanzen ermitteln. Alle Details besprechen und berechnen wir wie gewohnt im verlinkten YouTube Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Exzentrischer Stoß zwischen Platte und Rolle

Herzlich Willkommen!

Unser nächstes Stoßbeispiel behandelt einen exzentrischen Stoß zwischen einer Platte und einer fest gelagerten Rolle in der Ebene. Wir sollen uns dabei auch Gedanken darüber machen, welche spezielle Exzentrizität notwendig wäre um nach dem Stoßvorgang eine rein translatorische Bewegung für die Platte zu erreichen.

Betrachtet wird ein exzentrischer Stoß zwischen einer Platte und einer fest gelagerten Rolle.

Geg.:
Platte: m,Is,b.
Sie bewegt sich unmittelbar vor dem Stoß translatorisch mit v unter dem Winkel α gegen die Horizontale.

Rolle: in 0 reibungsfrei gelagert, I0,r.
Vor dem Stoß in Ruhe.

Es handelt sich um einen vollkommen unelastischen, rauen Stoß, d.h. unmittelbar nach dem Stoß haben die Kontaktpunkte den gleichen Geschwindigkeitsvektor.

Ges.:
*Gleichungen zur Bestimmung des Stoßantriebs in 0.
*Wie groß muss e sein, damit sich die Platte unmittelbar nach dem Stoß translatorisch bewegt.

Die Angabe gibt es natürlich auch als Download inkl. Endergebnissen. Ihr könnt damit das Beispiel zuerst selbst rechnen und dann mit meiner Musterlösung vergleichen.

Wir starten wie so oft mit einem Freikörperbild in welches wir alle Geschwindigkeiten und Stoßantriebe einzeichnen. Dabei bietet es sich hier an, die beiden Stoßpartner getrennt frei zu machen. Mittels der Freikörperbilder lassen sich Impuls- und Drehimpulsbilanzen anschreiben. Zusätzlich ist es nötig auch die Kinematik sowie die Bedingung des rauen Stoßvorgangs zu berücksichtigen, um genügend Gleichungen zur Verfügung zu haben. Den Spezialfall reiner Translation für die Platte leiten wir dann mit Hilfe der Kenntnis der Winkelgeschwindigkeit für die Platte ab. Alle Details besprechen und berechnen wir im verlinkten YouTube Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Stangenschuss beim Fußball – Stoßvorgang

Herzlich Willkommen!

Diesmal sehen wir uns ein etwas sportlicheres Beispiel an, nämlich den Stangenschuss beim Fußball. Wir möchten uns überlegen welcher Effet dem Ball mitgegeben werden muss um ihn von der Stange ins Tor zu bekommen.

Ein Fußball mit Masse m und Trägheitsmoment θs trifft mit der Geschwindigkeit v0 horizontal gegen den rauen Pfosten des Tores. Der Aufprall erfolgt dabei zentrisch unter dem Winkel α zur Torlinie. Die Stoßziffer beträgt ε.

Wie groß muss der Effet, d.h. die Winkelgeschwindigkeit ω0 des Balls sein, damit er nach dem Aufprall über die Torlinie geht, wenn während des Stoßes Haftung eintritt?

Quelle: Aufgabe 6.10 (S. 143) aus D. Gross, W. Ehlers, P. Wriggers, Formeln und Aufgaben zur Technischen Mechanik 3, 8. Auflage, 2007 Springer, Berlin

Die Angabe gibt es wie üblich als Download inkl. Endergebnissen. Ihr könnt damit das Beispiel zuerst selbst rechnen und dann mit meiner Musterlösung vergleichen.

Wir starten dieses Beispiel auch diesmal mit einem Freikörperbild in welches wir alle Geschwindigkeiten und Stoßantriebe einzeichnen. Daraus lassen sich Impuls- und Drehimpulssatz für den Ball ableiten. Zusätzlich benötigen wir die Stoßhypothese und einige Überlegungen zur Kinematik während des Stoßvorganges. Aus dem damit erstellten Gleichungssystem lässt sich dann mit wenigen Zusatzüberlegungen zur Geometrie, der benötigte Effet beim Schuss berechnen. Alle Schritte im Detail besprechen und berechnen wir wieder im verlinkten YouTube Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Seilstraffung als Stoßvorgang

Herzlich Willkommen!

Wir wollen uns heute ein Beispiel ansehen bei dem zwei Stoßvorgänge hintereinander stattfinden. Der erste ist ein durch Seilstraffung ausgelöster Stoßvorgang, der zweite dann ein klassischer Stoß zwischen Kugel und Quader. Insbesondere die Seilstraffung beinhaltet ein paar interessante Gedankengänge, die wir im Detail besprechen werden. Zuerst allerdings zur Angabe:

Eine Kugel mit der Masse mA, die als Massenpunkt angenähert werden kann, ist über ein schlaffes Seil mit dem Lager C verbunden. Die Kugel wird lt. Skizze aus der Horizontalen im Abstand 3/4 l vom Lager losgelassen. Das Seil wird als undehnbar angenommen, so dass bei der Straffung ein plastischer Stoß (Stoßziffer ε = 0) auftritt. In der Vertikalen trifft das Fadenpendel anschließend vollkommen elastisch (Stoßziffer ε = 1) auf einen Quader der Masse mB und verschiebt diesen auf einer rauen Ebene mit dem Reibungskoeffizient μ.

Geg.:
mA = 2 kg, mB = 5 kg, l = 1.2 m, μ = 0.3

Ges.:
*Geschwindigkeit der Kugel unmittelbar vor der Seilstraffung.
*Geschwindigkeit der Kugel nach dem Straffungsstoß und Stoßantrieb auf das Lager C. *Geschwindigkeit der Kugel unmittelbar vor dem Stoß mit dem Quader. *Geschwindigkeiten von Kugel und Quader unmittelbar nach deren Stoß.
*Die Höhe auf welche die Kugel zurückpendelt und die Strecke um die der Quader verschoben wird.

Quelle: Aufgabe D30 (S. 345f.) aus J. Berger, Klausurentrainer Technische Mechanik, 2. Auflage, 2008 Vieweg+Teubner, Wiesbaden

Die Angabe gibt es wie üblich als Download inkl. Endergebnissen. Ihr könnt damit das Beispiel zuerst selbst rechnen und dann mit meiner Musterlösung vergleichen.

Wir starten dieses Beispiel wieder mit einem Freikörperbild und berechnen insbesondere die Geometrie für den freien Fall der Kugel. Danach diskutieren wir eine Koordinatentransformation die uns die Berechnung des Straffungsstoßes erleichtert. In diesem Zusammenhang besprechen wir auch wie der Straffungsstoß ablaufen wird. Nachdem das geklärt ist, können die Geschwindigkeiten unmittelbar nach dem Stoßvorgang und der Stoßantrieb auf das Lager C berechnet werden. Mittels Energieerhaltung lässt sich dann die Geschwindigkeit der Kugel vor dem Stoß mit dem Quader bestimmen und der elastische Stoß zwischen Kugel und Quader berechnen. Hier führen wir auch eine Plausibilitätskontrolle durch, was immer eine gute Sache ist. Am Ende berechnen wir noch wie weit die Kugel zurückschwingt und wie weit der Quader auf der reibungsbehafteten Unterlage rutscht. Alle Schritte im Detail besprechen und berechnen wir wieder im verlinkten YouTube Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis morgen mit dem nächsten Beispiel,
Markus

Ebener Stoß zwischen Kugel und Stab

Herzlich Willkommen!

Wie gestern bereits gesagt, werden wir in den nächsten Tagen einige schon auf YouTube gepostete Beispiele nachholen. Das zweite dieser Beispiele ist ein ebener Stoßvorgang zwischen einer Kugel und einem Stab mit folgender Angabe:

Eine als Punktmasse zu betrachtende Kugel mit Masse m1 trifft mit der Geschwindigkeit v1 auf eine im Punkt A frei drehbar gelagerte zylindrische Stange mit der Masse m2 und der Länge L. Vor dem Stoß ist die Stange in Ruhe. Der Stoßpunkt befindet sich im Abstand h vom Lager und die Stoßziffer ist ε.

Geg.:
m_1 = 5 kg, m_2 = 7 kg, L = 0.4 m, ε = 0.7, h = 0.3 m, v_1 = 3 e_x m/s

Ges.:
*die Geschwindigkeit v_1′ der Kugel unmittelbar nach dem Stoß.
*die Winkelgeschwindigkeit ω‘ des Stabes unmittelbar nach dem Stoß.
*der Stoßantrieb S_A auf das Lager in A.

Die Angabe gibt es wie üblich als Download inkl. Endergebnissen. Ihr könnt damit das Beispiel zuerst selbst rechnen und dann mit meiner Musterlösung vergleichen.

Fast immer in der Technischen Mechanik beginnen wir mit einem Freikörperbild. So auch hier. Zusätzlich erkläre ich euch ein wenig theoretischen Hintergrund zum Stoßantrieb. Nachdem das geklärt ist, geht es daran den Drehimpuls vor und nach dem Stoß aufzustellen und den Drehimpulssatz für das Gesamtsystem anzuschreiben. Als zweite Bestimmungsgleichung für das System verwenden wir den Impulssatz, welchen wir ebenfalls für das Gesamtsystem anschreiben. Die dritte und letzte Gleichung ist dann die Newton’sche Stoßhypothese, wofür wir ebenfalls ein wenig Theorie diskutieren. Danach sind wir bereit das Gleichungssystem aufzulösen und die gesuchten Größen zu berechnen. Wie das alles im Detail funktioniert erkläre ich euch wieder im verlinkten YouTube Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis morgen mit dem nächsten Beispiel,
Markus