Diesmal geht es um eine Variation eines Klassikers der Relativkinetik, nämlich eine Masse in einem rotierenden Rahmen, welche zusätzlich an einem Ende mit einer Feder verbunden ist.
In einem Rahmen, der sich nach dem vorgegebenen Winkel-Zeit-Gesetz φ(t) in der xy-Ebene um den raumfesten Punkt 0 dreht, kann reibungsfrei eine Masse m gleiten, die mit einer Feder (Federkonstante c) verbunden ist. In der Lage q=L sei die Feder entspannt.
Berechne bezogen auf die Masse m folgende Größen: *Ortsvektor des Schwerpunktes *Relativgeschwindigkeit, Führungsgeschwindigkeit und Absolutgeschwindigkeit *Relativbeschleunigung, Führungsbeschleunigung, Coriolisbeschleunigung, Absolutbeschleunigung *Bewegungsgleichung der Relativbewegung der Masse im rotierenden Bezugssystem. *Normalkraft als Funktion der kinematischen Größen und der Masse m
Wir stellen zuallererst, wie in der Angabe gefordert, den Ortsvektor für die Masse auf. Dann können wir aus Relativ- und Führungsgeschwindigkeit den Vektor der Absolut-geschwindigkeit, sowie aus den Beschleunigungskomponenten eben den Absolut-beschleunigungsvektor berechnen. Mit Hilfe des Schwerpunktsatzes erhalten wir schließlich die Bewegungsgleichung für die Masse und können auch die Normalkraft auf die Masse bestimmen. Eine genaue Anleitung dazu mit den üblichen weiterführenden Erklärungen findest du im angehängten Video.
Bei Fragen oder Anmerkungen zu Beispiel oder Rechenweg bitte einfach hier oder auf YouTube einen Kommentar hinterlassen. Ich freue mich auf eure Rückmeldungen und beantworte gerne alle Fragen.
Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!
Ein absoluter Klassiker der Relativkinetik ist eine Masse die sich reibungsfrei in einem rotierenden Rohr bewegen kann. Genau das wollen wir uns hier ansehen.
Ein Teilchen P mit der Masse m kann sich reibungsfrei in einem um die z-Achse drehbaren Rohr der Länge l bewegen. Das Rohr rotiert mit der Winkelgeschwindigkeit Ω, die Winkelbeschleunigung beträgt Ω˙. Für die Anfangsbedingungen r(0)=r0 größer 0 und r˙(0)=0 sind die untenstehende Größen zu berechnen.
*Ortsvektor r_P(t) *Relativgeschwindigkeit v_R, Führungsgeschwindigkeit v_F und Absolutgeschwindigkeit v_P *Relativbeschleunigung a_R, Führungsbeschleunigung a_F, Coriolisbeschleunigung a_C und Absolutbeschleunigung a_P. *Kräfte auf die Masse *Abstand r(t) von der Drehachse für den Spezialfall Ω=const.
Hinweis: Alle Vektoren sind im mitrotierenden ξ,η,ζ System darzustellen.
Zum Ablaufplan der Rechnung ist hier eigentlich nicht viel zu sagen. Die Punkte (a) – (e) in der Angabe stellen nämlich bereits einen guten Ablaufplan zur Verfügung. Wir halten uns einfach daran und können auf direktem Wege alles berechnen. Natürlich könnt ihr den Rechenweg wieder Schritt für Schritt im verlinkten Video nachverfolgen. Viel Spaß damit!
Bei Fragen oder Anmerkungen zu Beispiel oder Rechenweg bitte einfach hier oder auf YouTube einen Kommentar hinterlassen. Ich freue mich auf eure Rückmeldungen.
Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!
Das letzte Beispiel zur Kreiseldynamik ist schon eine ganze Weile her, deshalb wollen wir uns heute wieder einmal ein solches ansehen.
Ein zylindrischer, homogener Stab (kein dünner Stab) ist in einer rotierenden Gabel reibungsfrei drehbar gelagert und über eine Drehfeder mit dieser verbunden.
Geg.: homogener Stab: Länge l, Durchmesser 2r, Masse m lineare Drehfeder: Drehfederkonstante cT, vollkommen entspannt bei ϕ=0 Gabel: Winkelgeschwindigkeit Ω, die durch ein entsprechendes Antriebsmoment MA konstant gehalten wird.
Ges.: *Wie groß darf Ω höchstens sein, damit der Stab für kleine Winkel ϕ eine Schwingung ausführt? *Welchen Wert muss das Antriebsmoment MA(ϕ) bei reibungsfreier Lagerung der Gabel annehmen. Anfangsbedingung: ϕ=0, ϕ˙=ν
Hinweis: Verwenden Sie die Euler’schen Kreiselgleichungen.
Quelle: Aufgabe 4.4.4 (S. 42) aus P. Lugner et al., Technische Mechanik, 1992 Springer-Verlag, Wien
Die Angabe zum Download gibt es wie gewohnt ihr hier:
Wie immer ist es wichtig sich anhand einer Skizze, d.h. eines Freikörperbilds bewusst zu machen, welche Kräfte und Momente sowie Geschwindigkeiten und Beschleunigungen im System wirken. Dann können wir hier auch schon die Euler’schen Kreiselgleichungen anschreiben, deren einzelne Terme bestimmen und in die allgemeine Form der Gleichungen einsetzen. Dadurch gelangen wir zu einem Gleichungssystem aus dem wir eine Bewegungsgleichung erhalten. Am Ende müssen wir uns noch darüber Gedanken machen, wann es sich bei dieser Bewegungsgleichung um eine Schwingungsgleichung handelt. All das besprechen wir wieder in voller Schönheit im verlinkten Video.
Sämtliche Fragen beantworte ich wie immer sehr gerne – schreibt sie mir bitte einfach hier oder auf YouTube als Kommentar.
Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!
Heute sehen wir uns eine Masse an, die an beiden Enden mit Federn in der Nut einer rotierenden Scheibe befestigt ist und durch die Drehbewegung der Scheibe schwingt.
In der glatten Nut einer Scheibe, die sich mit der Winkelgeschwindigkeit ω=const. dreht, ist eine Masse m an Federn (Federkonstante c ) befestigt.
Ges.: *Bewegungsgleichung im bewegten ξ – η System. *Kraft von der Nut auf die Masse *Welche Eigenfrequenz stellt sich für die Bewegung der Masse ein? *Winkelgeschwindigkeit ωcrit, bei der die Masse m mit der Scheibe rotiert, ohne in der Nut hin- und her zu schwingen.
Den Anfang macht auch hier ein Freikörperbild um die Geometrie und damit die Beschleunigung sowie die Kräfte auf die Masse definieren zu können. All diese Größen können wir dann mittels relativkinetischen Gleichungen und Schwerpunktsatz berechnen. Die Schritte im Detail, besprechen wir natürlich wieder ausführlich im verlinkten Video.
Bei Fragen oder Anmerkungen zu Beispiel oder Rechenweg bitte einfach hier oder auf YouTube einen Kommentar hinterlassen. Ich freue mich auf eure Rückmeldungen.
Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!
In diesem Beispiel zur Relativkinetik geht es um eine Kugel die zwischen zwei parallelen Platten gleiten kann, während die Platten selbst um die vertikale Achse rotieren.
Zwei parallele, starre Platten rotieren mit konstanter Winkelgeschwindigkeit Ω um die raumfeste vertikale z-Achse. Zwischen den Platten kann reibungsfrei eine kleine Kugel (Masse m) gleiten.
Bestimmen Sie die Bewegungsgleichungen des Kugelschwerpunktes in den Koordinaten q1 und q2, sowie die auf Kugel wirkenden Kräfte.
Quelle: Aufgabe D34 (S. 356) aus J. Berger, Klausurentrainer Technische Mechanik, 2. Auflage, 2008 Vieweg+Teubner, Wiesbaden
Wir beginnen hier mit der Berechnung des Ortsvektors der Kugel. Anschließend lassen sich die benötigten Geschwindigkeits- und Beschleunigungsterme bestimmen, nämlich Relativgeschwindigkeit und -beschleunigung sowie Führungs- und Coriolisbeschleunigung. Mittels Schwerpunktsatz können wir schließlich die Bewegungsgleichungen des Systems und die auf die Kugel wirkende Normalkraft bestimmen. Die Rechenschritte im Detail, besprechen wir ausführlich im YouTube Video.
Bei Fragen oder Anmerkungen zu Beispiel oder Rechenweg bitte einfach hier oder auf YouTube einen Kommentar hinterlassen. Ich freue mich auf eure Rückmeldungen.
Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!
Heute sehen wir uns wieder einmal ein Beispiel zum Prinzip von d’Alembert an.
Eine Platte der Masse M ruht auf zwei Walzen, die jeweils die Masse m und den Radius r besitzen. Die linke Walze ist als Vollzylinder, die rechte als dünnwandiger Hohlzylinder ausgeführt.
Ges.: *Bestimme die Beschleunigung der Platte unter der Annahme, dass kein Gleiten auftritt, mit Hilfe des Prinzips von d’Alembert.
Die Angabe gibt es natürlich wieder als Download inkl. Endergebnissen, damit ihr das Beispiel vorab selbst rechnen könnt.
Diese rechnerisch eher kurze Aufgabe eignet sich sehr gut dazu das Prinzip von d’Alembert genauer zu erklären. Wir diskutieren also welche Beiträge es gibt und woher diese kommen. Außerdem klären wir was es mit den d’Alembert’schen Trägheitstermen und Trägheitskräften auf sich hat. Im Zuge dessen rechnen wir selbstverständlich auch die gefragte Beschleunigung des Brettes aus. Das und noch einiges mehr gibt es wieder im verlinkten YouTube Video zu sehen. Viel Spaß damit!
Wenn ihr Fragen habt schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen schnellstmöglich beantworten.
Hat euch das Video gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!
Wir widmen uns wieder einem Kreiselbeispiel. Darin wollen wir heute die Lager einer idealisierten Mischmaschine dynamisch auslegen. Folgendes ist gegeben:
Ein Rotor sei in einem rotierenden Rahmen gelagert. Die Masse des Rotors ist m, seine Massenträgheitsmomente Ix sowie Iy = Iz und seine Winkelgeschwindigkeit relativ zum Rahmen ωR. Für den Rahmen sind die Abmessungen l, der Winkel α sowie seine Winkelgeschwindigkeit Ω und Winkelbeschleunigung Ω˙ gegeben. Alle Lager sind als reibungsfrei anzunehmen.
Ges.: *Die Bestimmungsgleichungen für die Kräfte auf den Rotor in A und B dargestellt im rahmenfesten x-y-z-System. *Die relative Winkelbeschleunigung ω˙R des Rotors.
Quelle: Aufgabe 4.4.2 (S. 41) aus P. Lugner et al., Technische Mechanik, 1992 Springer-Verlag, Wien
Die Angabe zum Download findet ihr wie immer hier:
Wie meistens, starten wir mit einem Freikörperbild. Nachdem wir uns darüber im Klaren sind wie die Winkelgeschwindigkeiten im gegeben Koordinatensystem wirken, können wir den Drehimpulsvektor anschreiben. Für den Drehimpulssatz benötigen wir die Zeitableitung dieses Drehimpulsvektors. Diesmal haben wir auch eine nicht verschwindende partielle Zeitableitung. Der zweite Term des Drehimpulssatzes ist der Vektor der äußeren Momente. Die Momente entstehen aus den Lagerkräften und ermöglichen uns damit die Bestimmung eben dieser Lagerkräfte. Am Ende bestimmen wir noch ω_R und stellen fest, dass dessen x-Komponente konstant sein muss. Die Rechenschritte im Detail besprechen wir ausführlich im verlinkten YouTube Video. Viel Spaß damit!
Sämtliche Fragen beantworte ich wie immer sehr gerne – schreibt sie mir bitte einfach hier oder auf YouTube als Kommentar.
Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!
Die Mathematik ist die Sprache der technischen Mechanik und die Vektorrechnung ist ein wichtiger Teil davon. Wir sehen uns in diesem Beitrag an wie wir Vektoren zeitsparend anschreiben können und stoßen dabei auf die sogenannte Tensornotation.
Außerdem diskutieren wir was ein Vektor überhaupt ist, was es mit Koordinatensystemen und Einheitsvektoren auf sich hat und wie wir die Komponenten eines Vektors in einem Koordinatensystem bestimmen können.
Schließlich besprechen wir auch noch wie der Betrag eines Vektors in der ebene und auch im Raum bestimmt werden kann. Natürlich gibt es noch zahlreiche weitere Möglichkeiten mit Vektoren zu rechnen. Diese schauen wir uns dann in den folgenden Beiträgen zur Vektorrechnung an und erarbeiten uns damit die mathematische Basis für die technische Mechanik.
Du hast vielleicht im Urlaub schon einmal mit jemandem gesprochen, der nicht deine eigene Sprache spricht. Hat das gut funktioniert? Vielleicht kann man sich mit Englisch behelfen, wenn beide Englisch können. Aber besser wäre es doch, wenn beide dieselbe Sprache sprechen.
Und genau das gleiche gilt für die technische Mechanik. Die Sprache der technischen Mechanik ist die Mathematik. Und ein sehr wichtiger Teil der Mathematik, den wir insbesondere zu Beginn der technischen Mechanik brauchen, ist die Vektorrechnung.
Wie schreiben wir einen Vektor eigentlich auf?
Insbesondere in der technischen Mechanik haben wir eine Notation, die vielleicht ein bisschen davon abweicht, was du gewohnt bist. Es geht darum, dass wir verschiedene Größen haben. Wir können Skalare haben, wir können Vektoren haben, wir können Matrizen haben und wir wollen all diese Größen in eine gemeinsame Notation zusammenfassen.
Wir beginnen also bei Null, nämlich bei einem Skalar. Wir haben auch in der Mechanik skalare Größen, nämlich Masse, Länge, Flächeninhalte, Volumina und so weiter. Alle skalaren Größen haben gemeinsam, dass sie als Zahl ausdrückbar sind. Wir fassen das alles was wir jetzt besprechen zusammen in die sogenannte Tensornotation. Wir haben hier bei den Skalaren sogenannte Tensoren 0. Stufe. Deswegen auch vorher der Hinweis: Wir beginnen bei Null – Tensor 0.Stufe.
Wir haben aber nicht nur Skalare, sondern wir haben natürlich auch Vektoren in der technischen Mechanik. Also z.B. einen Kraftvektor, einen Momentenvektor, einen Abstandsvektor r, aber auch in der Dynamik, einen Geschwindigkeitsvektor oder einen Beschleunigungsvektor. Und so weiter. Bei den Vektoren wissen wir, diese haben Betrag und Richtung und natürlich eine Wirkungslinie. Wir besprechen das dann gleich im Detail. Wir können einen Vektor also in Komponenten ausdrücken. Und der Vektor ist ein Tensor erster Stufe.
Und dann gibt es in der Mechanik natürlich auch noch Größen wie Spannungen, Dehnungen. Und die werden als Matrix entsprechend angeschrieben. Nämlich, eine Dehnungsmatrix, Dehnungstensor Epsilon Spannungstensor, Spannungsmatrix Sigma. Und so weiter. Und die nennen wir Tensoren zweiter Stufe. Hier haben wir jetzt sozusagen ein Gebilde, das sowohl Spalten als auch Zeilen enthält. Eine Matrix, wie du sie kennst. Also zwei Dimensionen sozusagen. Und deswegen Tensor zweiter Stufe.
Und jetzt wird hoffentlich auch die Notation klar. Wir verwenden nämlich hier am Kanal insbesondere, aber auch oft in der technischen Mechanik im Allgemeinen eine Notation, die genau die Stufe des Tensors widerspiegelt.
Wir haben: nullte Stufe. Keinen Unterstrich.
Wir haben: erste Stufe. Ein Unterstrich.
Und wir haben: zweite Stufe. Zwei Unterstriche.
Damit ersparen wir uns, dass wir unterschiedlich notieren, ob etwas ein Vektor ist oder eine Matrix mit z.B. diesem Dach-Symbol, wie es oft in der Physik zu finden ist oder irgendetwas Fettdrucken. Wir haben einfach ein Unterstrich Vektor, zwei Unterstriche Matrix und so weiter.
Und dieses und so weiter gibt es in der technischen Mechanik auch, nämlich einen mit vier Unterstrichen. Ein Tensor vierter Stufe. Das ist der bekannte E-Modul Tensor. Der E-Modul Tensor bzw. der E-Modul wird uns dann später noch begegnen, wenn wir über das Hooke’sche Gesetz sprechen. Lineare Elastizität. Du kennst das Ganze vielleicht in der einfachsten Form, nämlich als zwei skalare Werte: E-Modul als Zahlenwert und Querkontraktionszahl nü als zweiten Zahlenwert, um das linear elastische Materialverhalten zu beschreiben. In dieser Notation als Tensor hat der E-Modul Tensor im Allgemeinen 81 Komponenten. Man braucht zwar nie diese 81 Komponenten, weil auch Symmetrien auftreten, aber es gibt im Allgemeinen 81 Einträge in diesem vierstufigen Tensor. Dazu aber später mehr.
Was ist ein Vektor eigentlich?
Nachdem wir jetzt wissen, wie wir einen Vektor aufschreiben, wollen wir uns überlegen, was ein Vektor eigentlich ist. Und ich gehe davon aus, dass die meisten schon Vektoren gesehen haben, wissen, wie man einen Vektor im Grunde hinschreibt, dass er Komponenten hat usw. Wir wollen uns das Ganze aber trotzdem im Detail noch einmal anschauen.
Was ist also ein Vektor? Ein Vektor ist ein Objekt, das eine Wirkungslinie besitzt. Ein Stift beispielsweise hat eine Wirkungslinie. Einen Betrag. Beginn und Ende des Stifts. Und er hat eine Richtung, in die er zeigt. Diese drei Größen definieren unseren Vektor – Stift.
Wenn wir uns das genauer aufzeichnen, dann hätten wir also hier eine Wirkungslinie und auf dieser Wirkungslinie liegt unser Vektor. Wir nennen den Vektor F. Kraftvektor. Der Vektor hat jetzt hier einen Beginn. Und ein Ende. Beginn und Ende nennen wir Schaft und Spitze. Das wird später noch interessant werden, wenn wir ausrechnen, wie ein Vektor eigentlich aussieht. Aus zwei Punkten beispielsweise. Und dann hat der Vektor natürlich die Richtung, nämlich die Richtung, in die er mit seinem Kopf, mit dem Pfeil des Vektors zeigt. Hier in unserem Fall nach rechts oben. Und er hat einen Betrag, nämlich den Abstand zwischen seinem Schaft und seiner Spitze.
Jetzt können wir den Vektor in Komponenten zerlegen. Nämlich beispielsweise in eine horizontale Komponente. In dem wir hier ein Dreieck einzeichnen. Fx. Und in eine vertikale Komponente Fy. Jetzt habe ich hier stillschweigend vorausgesetzt, dass es bereits ein Koordinatensystem gibt, nämlich x in horizontale und y in vertikale Richtung. Auch das zeichnen wir uns hier noch ein. x und y. Und wir bezeichnen dann in der Mechanik oft diese beiden Richtungen als ex und ey. Durch den Einheitsvektor. e bezeichnet den Einheitsvektor. ex Einheitsvektor in x Richtung. Einheitsvektor heißt, der Vektor beschreibt die Richtung und hat die Länge eins.
Wozu ist das gut?
Wir können damit auf unseren Einheitsvektor projizieren, indem wir nämlich sagen Fx ist der Betrag unseres Vektors in x-Richtung multipliziert mit dem Einheitsvektor ex. Und das gleiche natürlich für unsere y Komponente. Und wir können damit, weil es manchmal einfach praktischer ist, Beträge und Richtungen voneinander getrennt hinschreiben.
Betrag eines Vektors in der Ebene (2D)
Wie kommen wir jetzt in diesem Beispiel hier zur Länge? Zum Betrag unseres Vektors F.
Dazu nutzen wir den Satz von Pythagoras. Wir können ja unseren Vektor F darstellen durch diese beiden Komponenten in x und y Richtung.
Wir können diese beiden Komponenten, wenn wir ein bisschen aufpassen, auch hier einfach als Dreieck anlegen. Aufpassen muss man insbesondere bei der Momentenwirkung von Fy hier, dass man sich nicht selbst in die Irre führt. Aber abgesehen davon, für diese Konstruktion dürfen wir das. Wir haben also dann ein rechtwinkliges Dreieck mit dem rechten Winkel hier. Und damit gilt der Satz von Pythagoras, der ja lautet: F Quadrat – Hypotenuse ist gleich Quadrat der einen Kathete plus Quadrat der anderen Kathete. Und daraus lässt sich F ist gleich Wurzel aus Fx Quadrat plus Fy Quadrat anschreiben.
Wenn wir jetzt noch berücksichtigen, dass die Quadrate natürlich zu positiven Ergebnissen führen, dann müssen wir hier auch noch Betrag von F schreiben. Unter Berücksichtigung, dass wir die Einheitsvektoren ex und ey herausziehen dürfen, reicht es uns hier natürlich aus, nur die Längen von Fx und Fy zu quadrieren. Wir können also genauso schreiben. Unser Betrag von F ist die Wurzel aus dem Betrag von Fx zum Quadrat und dem Betrag von Fy zum Quadrat. Nur deren Länge. Die Einheitsvektoren werden ja jeweils eins, wenn man sie quadriert. Das ist in der Ebene der Satz von Pythagoras.
Betrag eines Vektors im Raum (3D)
Das Ganze funktioniert aber auch als Erweiterung auf drei Dimensionen. Wir können uns nämlich ein Koordinatensystem in drei Dimensionen aufzeichnen mit x, y und z, indem hier ein Vektor liegt. Beispielsweise so: F Vektor und das Ganze dann projizieren auf die Achsen. Wir haben hier natürlich eine z-Achse und damit hier hinten Fz. Und wir können in diese Ebene herunter in die x-y-Ebene projizieren und dann weiter auf die einzelnen Achsen und bekommen hier einen Beitrag Fx und einen Beitrag Fy.
Und dann lässt sich Pythagoras auf drei Dimensionen simpel erweitern, indem wir einfach die dritte, nämlich die z-Komponente mit reinnehmen in unsere Wurzel als quadrierten Wert.
Und damit gilt auch hier, dass der Betrag unseres Vektors F die Wurzel sein muss. Fx Quadrat plus Fy Quadrat plus Fz Quadrat. Und gleiches Argument wie zuvor: Die Einheitsvektoren fallen aus dem Quadrat heraus. Sie liefern jeweils nur eins. Wir können also mit den Beträgen arbeiten und dann hier den Betrag von F bestimmen aus der Wurzel Fx Länge Quadrat plus Fy Quadrat plus Fz Quadrat. Jeweils ohne Vektor.
Ausblick auf weitere Beiträge
Das sind die zwei wesentlichen Ergebnisse, wenn es um die Berechnung des Betrags eines Vektors geht. Die sollte man im Hinterkopf behalten und sich noch einmal durchüberlegen, wie das Ganze funktioniert.
Welche anderen Möglichkeiten es jetzt gibt, mit Vektoren zu rechnen, zu addieren, Produkte zu bilden, das ist natürlich für die technische Mechanik genauso wichtig und das werden wir uns im nächsten Video dann genauer anschauen.
Wenn du zu diesem Beitrag hier Fragen hast, dann stelle die Fragen bitte einfach in die Kommentare (hier oder auf YouTube). Ich werde alles so schnell wie möglich beantworten.
Hat euch dieser Inhalt gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen und erzählt gerne euren Freund*innen und Kolleg*innen von meinem Angebot. Vielen Dank!
Wir widmen uns diesmal der Frage, welche konkreten Themen hier auf der Website und auf meinem YouTube Kanal eigentlich behandelt werden. Das ganze könnt ihr je nach belieben als Video anschauen oder das Transkript lesen, das ich in diesem Beitrag zur Verfügung stelle.
Du wirst dich vielleicht fragen: Welche Inhalte erwarten mich eigentlich auf diesem Kanal oder hier im Blog? Die kurze Antwort würde lauten: Sehr, sehr viele.
Die längere Antwort und um welche Themengebiete es eigentlich geht, sehen wir uns im folgenden an.
Wir sprechen heute über die Inhalte, die ich in Zukunft behandeln werde bzw. schon behandle. Im Wesentlichen geht es um die großen Themengebiete Statik, Festigkeitslehre, Dynamik und höhere Dynamik.
Überblick über alle Themengebiete
In der Statik beschäftigen wir uns zu allererst und etwas außerhalb des Fokus mit der Vektorrechnung, weil das einfach ein sehr, sehr wichtiges Werkzeug ist, das wir brauchen werden. Deshalb hier auch in Blau dargestellt.
Dann geht es um die Kraftreduktion. Also wie reduziere ich ein allgemeines Kraftsystem, so dass eine resultierende Einzelkraft und eventuell ein resultierendes Moment übrig bleibt?
Dann schauen wir uns Momentengleichgewicht an, und was das im Sinne der Kraftreduktion bedeutet. Wir beschäftigen uns mit den Auflagerreaktionen, und natürlich mit den Gleichgewichtsbedingungen, Kräftegleichgewicht, Momentengleichgewicht.
Themengebiete in der Statik
Dann gehen wir einen Schritt weiter und diskutieren Streckenlasten, sehen uns an, wie wir eine Streckenlast ersetzen können durch resultierende Einzelkräfte. Wie das für einfache Streckenlasten funktioniert, wie beispielsweise eine Rechteckslast oder eine Dreieckslast, aber auch für komplexere Streckenlasten, bei denen eine Integration notwendig ist.
Dann machen wir einen kurzen Abstecher zu den Fachwerken, die in der technischen Mechanik, insbesondere im Bauingenieurwesen, natürlich auch eine große Rolle spielen.
Wir beschäftigen uns mit dem Riesenthema Schnittgrößen, und zwar hier im Gegensatz zu vielen Behandlungen, die vielleicht aus der HTL oder anderen technischen Schulen bekannt sind, mit einem Verlauf von Schnittgrößen, also einer Funktion, die über unseren gesamten Träger gilt und nicht nur mit speziellen Schnittgrößen an speziellen Punkten am Träger.
Und zu guter Letzt und vielleicht schon ein wenig in die Festigkeitslehre reichend. Beschäftigen wir uns noch mit der Berechnung von Schwerpunkten von allgemeinen Körpern.
Dann geht es weiter in der Festigkeitslehre. Dort beginnen wir mit der Definition und der Berechnung von Flächenträgheitsmoment.
Wir schauen uns an, was es mit dem sogenannten Spannungszustand auf sich hat. Wie Spannungen zu charakterisieren sind, den Spannungstensor.
Wir beschäftigen uns mit Materialverhalten. Wozu brauchen wir eigentlich eine Definition des Materialverhaltens und werden uns exemplarisch als eines der einfachsten Materialverhalten, Materialgesetze, das Hook’sche Gesetz – lineare Elastizität – ansehen.
Dann diskutieren wir, was Vergleichsspannungen sind, wofür wir diese brauchen. Warum Vergleichsspannungen so wichtig sind.
Themengebiete in der Festigkeitslehre I
Dann gehen wir sozusagen in die Ebene des Trägers. Beschäftigen uns mit Biegeträgern, Biegebelastungen. Schauen uns also an, was am Querschnitt eines Trägers passiert und wenden uns auch einem analytischen Verfahren zu, nämlich der Differentialgleichung der Biegelinie. Ein sehr mächtiges Werkzeug zur Berechnung von Verformungen von Trägern.
Ein wichtiger Punkt je nach Fachgebiet kann natürlich auch die Torsion sein. Diese werden wir uns hier für reine Torsion ansehen.
Und am Ende möchten wir uns gerne noch in diesem Abschnitt der Festigkeitslehre ein bisschen Gedanken darüber machen, wie Träger zu dimensionieren sind. Alle Dinge von der Statik begonnen, also von der Reduktion eines Kraftsystems weg, führen uns am Ende zu diesem Kapitel Trägerdimensionierung.
Ein sehr, sehr wichtiges Kapitel aus der technischen Mechanik, das dann auch in weiterführenden Fächern, wie beispielsweise den Maschinenelementen benötigt wird.
Außerdem haben wir dann in der Festigkeitslehre auch noch andere weiterführende Kapitel, die ich gerne diskutieren würde. Nämlich zum Beispiel den Querkraftschub. Energiemethoden, also den Satz von Castigliano und den Satz von Menabrea, die uns auch zur Berechnung statisch unbestimmter Systeme dienen. Die Bredt’schen Formeln, die für dünnwandige Querschnitte gelten. Und zu guter Letzt beschäftigen wir uns noch ein wenig mit Stabilität, nämlich mit der Euler’schen Knickung.
Themengebiete in der Festigkeitslehre II
Das ist aber noch nicht alles, sondern wir beschäftigen uns natürlich auch mit der Dynamik. Auch die Dynamik ist ein wichtiger Bestandteil der technischen Mechanik und wir beginnen dort ganz langsam mit der Kinematik.
Punktkinematik, zu allererst, schiefe Würfe. Und dann auch Starrkörper- oder Vektorkinematik, wo dann auch Rotationen von Körpern eine Rolle spielen, weil die Körper eine gewisse Ausdehnung haben. Dort sehen wir dann Dinge wie Kurbeltriebe, Kreuzschieber und andere technisch relevante Anwendungen.
Themengebiete in der Dynamik
Um dann auch die Kräfte und Momente behandeln zu können, die zu dieser Kinematik führen brauchen wir auf dem Weg die Massenträgheitmomente. Wir müssen also definieren, was ist ein Massenträgheitsmoment? Wie berechnet man ein Massenträgheitsmoment und wozu wird es eigentlich verwendet?
Dann können wir in die Kinetik gehen. Auch hier Punktkinetik und Starrkörperkinetik. Also Schwerpunktsatz, sprich Newtonsches Axiom und Drallsatz bzw. Drehimpulssatz.
Und hier am Ende der Einführung zur Dynamik stehen dann noch Schwingungen. Auch das natürlich technisch von höchster Relevanz.
Das war aber auch noch nicht alles, sondern wir beschäftigen uns hier auch mit der höheren Dynamik, in diesem Falle insbesondere mit Dingen wie Relativkinetik.
Die Relativkinetik beginnt ja immer mehr an Bedeutung zu gewinnen. Wenn es zum Beispiel um automatisierte Prozesse in Fabriken geht.
Dann geht es auch um analytische Prinzipien in der Dynamik, nämlich die Lagrange-Mechanik und den Satz von d’Alembert, wo wir dann auch Systeme mit mehreren Freiheitsgraden berechnen können. Auch das ist zum Beispiel in der Maschinendynamik eine wichtige Sache, wenn es um die Dämpfung von Schwingungen geht oder auch nur, das Schwingungsverhalten an sich.
Was vielleicht für die eine oder den anderen auch ganz spannend sein kann, nämlich insbesondere, wenn es in Richtung Sachverständigentätigkeit geht, Verkehrsunfälle beispielsweise, sind Stoßvorgänge. Wir werden hier mehrere Stoßvorgänge durchbesprechen, konkrete Beispiele rechnen, auch Beispiele von Autounfällen. Und wir werden dann sehen, dass es hier tatsächlich möglich ist, mit einer sehr guten Genauigkeit zurückzuverfolgen, ob beispielsweise Verkehrsregeln bei einem Zusammenstoß tatsächlich eingehalten wurden.
Und zu guter Letzt geht es auch noch um die Kreiseldynamik, also um Systeme, die im Allgemeinen um mehrere Achsen rotieren und damit als Kreisel definiert werden können, wo Dinge wie Relativkinetik dann auch in diese Kreiseldynamik hineinspielen. Aber insbesondere ein allgemeiner Drehimpuls- oder Drallsatz notwendig ist. Auch das höchst spannende Systeme, die wir uns auch hier anschauen werden.
Du siehst also, wir werden es im Laufe der Zeit mit einer Vielzahl an verschiedensten Themengebieten in der technischen Mechanik zu tun haben. Ich werde immer versuchen, Theorie und Beispiele zu den jeweiligen Themengebieten zur Verfügung zu stellen. Die Themengebiete werden im Laufe der Zeit in verschiedenen Playlists organisiert sein, sodass du hoffentlich möglichst rasch genau das findest, was du suchst.
Wenn es zu den Inhalten oder allgemein Fragen gibt, dann bitte zögere nicht und stelle die Frage gerne in den Kommentaren. Ich werde wie immer die Frage schnellstmöglich beantworten und freue mich schon darauf.
Hat euch dieser Inhalt gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen und erzählt gerne euren Freund*innen und Kolleg*innen von meinem Angebot. Vielen Dank!
Das letzte der nachzuholenden Beispiele ist noch einmal aus der Relativkinetik. Allerdings handelt es sich um eher untypische Relativkinetik. Warum, werden wir weiter unten besprechen. Zuerst aber zur Angabe.
Ein Keil der Masse m2 und des Neigungswinkels α kann sich entsprechend der Abbildung auf einer horizontalen Ebene bewegen. Auf dem Keil befindet sich im höchsten Punkt ein Quader, der aus der Ruhelage heraus reibungsfrei nach unten rutscht.
Geg.: m1 = 3 kg, m2 = 6 kg, α = 30°, l = 1.2 m
Ges.: *Beschleunigung des Quaders und des Keils. *Geschwindigkeit des Quaders und des Keils, wenn der Quader seine tiefste Lage erreicht. *Verschiebung des Keils, wenn der Quader seine tiefste Lage erreicht.
Quelle: Aufgabe D34 (S. 356) aus J. Berger, Klausurentrainer Technische Mechanik, 2. Auflage, 2008 Vieweg+Teubner, Wiesbaden
In der Einleitung habe ich es schon angesprochen: Dieses Beispiel ist etwas unüblich für Relativkinetik. Wir müssen hier nämlich mit den Schwerpunktsätzen starten und können uns erst damit die relevanten Beschleunigungen ausrechnen. Normalerweise ist es umgekehrt. Daher ist besonders hier ein sauberes Freikörperbild essentiell. Zur besseren Veranschaulichung fertigen wir sogar zwei separate Freikörperbilder an. Eines für die Kräfte und eines für die Beschleunigungen. Damit können wir dann die Schwerpunktsätze aufstellen und uns daraus und mit Hilfe kinematischer Zusammenhänge alle gefragten Werte berechnen. Die Rechenschritte im Detail, besprechen wir ausführlich im YouTube Video.
Bei Fragen oder Anmerkungen zu Beispiel oder Rechenweg bitte einfach hier oder auf YouTube einen Kommentar hinterlassen. Ich freue mich auf eure Rückmeldungen.
Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!
Bis morgen mit einer weiteren Einheit zur Theorie, Markus