Statisches Gleichgewicht am Stabdreischlag

Herzlich Willkommen!

Heute geht es um eine spezielle Form eines Zentralkraftsystems, nämlich einen Stabdreischlag.

Ein Stabdreischlag ist an einer Wand befestigt. An einem Seil, das Reibungsfrei durch eine Öse im Knoten K geführt wird, hängt eine Kiste (Gewichtskraft G).

Wie groß sind die Stabkräfte?

Quelle: Aufgabe I.1.6 (S. 14) aus W. Hauger et al., Aufgaben zu Technische Mechanik 1-3, 7. Auflage, 2012 Springer, Heidelberg

Wie auch schon bei der Reduktion des 3D Kraftsystems, müssen wir hier ebenfalls zuerst die Einheitsvektoren und daraus die Kraftvektoren für Stabkräfte und Seilkraft bestimmen. Dazu ist wieder ein Freikörperbild enorm hilfreich. Anschließend lässt sich ein vektorielles Kräftegleichgewicht bilden und dieses mittels Koeffizientenvergleich lösen. Die Vorgehensweise im Detail gibt es wie gewohnt im verlinkten Video.


Bei Fragen oder Unklarheiten lasst bitte gerne einen Kommentar hier. Ich freue mich außerdem über Anregungen zu weiteren Inhalte und generell eure Rückmeldungen. Gebt dem Video außerdem bitte einen Daumen hoch und abonniert den YouTube Kanal. Vielen Dank für eure Unterstützung!

Bis bald,
Markus

Statik – Reduktion eines 3D Kraftsystems

Herzlich Willkommen!

Diesmal besprechen wir, warum es hilfreich sein kann mit Vektoren bei der Berechnung von Kraftsystemen zu arbeiten.

Gegeben seien laut Skizze die beiden Kräfte F1=8N und F2=10N, sowie die Koordinaten der Punkte A(0|6|0)m, B(6|4|0)m, C(3|1|2)m. F2 zeige in die positive z-Richtung.

Reduziere das Kraftsystem in den Ursprung des gegebenen Koordinatensystems, d.h. berechne den resultierenden Kraftvektor R, den resultierenden Momentenvektor M_R(0) und den Betrag des Kraftvektors |R|.

Wir sehen, dass zuerst die beiden Kraftvektoren F1 und F2 zu bestimmen sind. Dazu müssen wir die jeweils relevanten Einheitsvektoren berechnen. Dann kann die resultierende Kraft als Vektorsumme von F1 und F2 und das resultierende Moment aus dem Kreuzprodukt bestimmt werden. Wie das genau funktioniert sehen wir uns im verlinkten Video an.


Bei Fragen oder Unklarheiten lasst bitte gerne einen Kommentar hier. Ich freue mich außerdem über Anregungen zu weiteren Inhalte und generell eure Rückmeldungen. Gebt dem Video außerdem bitte einen Daumen hoch und abonniert den YouTube Kanal. Vielen Dank für eure Unterstützung!

Bis bald,
Markus

Statisches Gleichgewicht – Walze über Stufe hochziehen

Herzlich Willkommen!

Wir besprechen diesmal wieder ein Beispiel zum statischen Gleichgewicht. Es soll eine Walze mit minimaler Kraft über eine Stufe hochgezogen werden.

Eine glatte Walze mit der Gewichtskraft G und dem Radius r soll reibungsfrei eine Stufe der Höhe h hochgezogen werden.

Welche Richtung muss die dazu erforderliche Kraft F haben, damit sie möglichst klein ist?
Wie groß ist dieser Minimalwert?

Quelle: Aufgabe I.1.2 (S. 13) aus W. Hauger et al., Aufgaben zu Technische Mechanik 1-3, 7. Auflage, 2012 Springer, Heidelberg

Die Idee in diesem Beispiel ist sehr simpel. Wir suchen nach jenem Winkel der Kraft F zur Horizontalen, der ein Hochheben der Walze ermöglicht und gleichzeitig die minimale Gesamtkraft ergibt. Kraft und Winkel lassen sich ganz einfach mittels Kräftegleichgewicht berechnen. Die Details sehen wir uns wie gewohnt im verlinkten Video an.


Stellt bitte wie immer gerne Fragen, wenn es Unklarheiten gibt. Ich freue mich außerdem über Anregungen zu weiteren Inhalte und generell eure Rückmeldungen. Gebt dem Video auch gerne einen Daumen hoch und abonniert den YouTube Kanal. Vielen Dank für eure Unterstützung!

Bis bald,
Markus

Lagrange: Block mit Pendel auf schiefer Ebene

Herzlich Willkommen!

Diesmal geht es um ein System aus einem Block und einem mathematischen Pendel. Das Pendel schwingt um den Schwerpunkt des Blocks, während der Block eine schiefe Ebene entlang gleitet.

Ein Block der Masse M gleite reibungsfrei unter dem Einfluss der Schwerkraft auf einer schiefen Ebene mit Neigungswinkel α gegen die Horizontale. An seinem Schwerpunkt sei die Masse m über einen masselosen Faden der Länge l befestigt.

Ges.:
*Wie lautet die Lagrange-Funktion des Systems sowie dessen Bewegungsgleichungen bzgl. s und φ?
*Errechnen Sie eine geschlossene Differentialgleichung für φ(t).
*Geben Sie die Eigenfrequenz ω der Schwingung für M sehr viel größer als m und kleine Winkelausschläge (φ ~ α) an und zeigen Sie, dass φ(t)=α+φsin(ωt+δ) eine gültige Lösung darstellt.

Hinweis: Zur Vereinfachung der Ergebnisse benötigen Sie die Additionstheoreme cos(α−β)=cosαcosβ+sinαsinβ
sin(α−β)=sinαcosβ−cosαsinβ

Quelle: Aufgabe 1.2.12 (S. 51) aus W. Nolting, Grundkurs Theoretische Physik 2, Analytische Mechanik, 2011, Springer, Berlin

Die Angabe gibt es wie gewohnt als Download inkl. Endergebnissen.

Wir stellen zuallererst wieder die relevanten Koordinaten von Block und Pendelmasse auf und drücken sie als Funktion der generalisierten Koordinate (s und Pendelwinkel) aus. Daraus lassen sich die Geschwindigkeiten bestimmen und anschließend beide Anteile zur Energie, kinetische und potentielle Energie, ermitteln. Dann lassen sich aus der Lagrangefunktion die Bewegungsgleichungen ableiten und eine geschlossene Differentialgleichung für den Pendelwinkel anschreiben. Schließlich können wir die geforderte Linearisierung durchführen. Wie immer gibt es die ausführliche Erklärung im verlinkten Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Viel Spaß mit diesem Beispiel und bis bald,
Markus

Inelastischer Stoß: Kugel – Stab

Herzlich Willkommen!

Unser nächstes Stoßbeispiel behandelt einen inelastischen Stoß zwischen einer Kugel und einem Stab bzw. Balken.

Eine Punktmasse m1 trifft mit der Geschwindigkeit v auf einen in A reibungsfrei drehbar gelagerten Balken auf. Der Stoß sei vollkommen unelastisch.

Geg.:
Masse 1: m1, v
Stab: s, l, Masse m2, Trägheitsmoment IA bezüglich A.

Ges.:
*Winkelgeschwindigkeit ω′ des Stabes unmittelbar nach dem Stoß.
*Stoßantrieb im Lager A.
*Endausschlagwinkel ϕE, wenn sich die Punktmasse und der Balken nach dem Stoß nicht trennen.
*Energieverlust beim Stoß.

Quelle: Aufgabe 4.6.2 (S. 48) aus P. Lugner et al., Technische Mechanik, 1992 Springer, Wien

Die Angabe gibt es natürlich auch als Download inkl. Endergebnissen. Ihr könnt damit das Beispiel zuerst selbst rechnen und dann mit meiner Musterlösung vergleichen.

Ausnahmsweise beinhaltet hier die Angabeskizze bereits alle relevanten Größen, mit Ausnahme des Stoßantriebs im Lager. Wir können also direkt darauf zurückgreifen und mittels Impuls- und Drehimpulssatz sowie weniger Überlegungen zur Kinematik, sowohl die Winkelgeschwindigkeit nach dem Stoß als auch den Stoßantrieb im Lager berechnen. Anschließend lassen sich der Endausschlagswinkel und der Energieverlust beim Stoß durch einfache Energiebilanzen ermitteln. Alle Details besprechen und berechnen wir wie gewohnt im verlinkten YouTube Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Lagrange: Block auf zwei Stangen mit Drehfedern

Herzlich Willkommen!

Wir sehen uns heute ein Beispiel aus der Dynamik an, welches mit der Methode von Lagrange berechnet werden soll. Dabei besprechen wir auch, wie Federn in diesem Zusammenhang zu behandeln sind.

Zwei drehbar gelagerte Stangen (Länge l=0.8 m, Masse m2=5 kg) sind an einem Block (Masse m1=12 kg) gelenkig angeschlossen. Am Ende jeder Stange ist eine Torsionsfeder (Federsteifigkeit K=500 Nm) befestigt. Das System ist in der gezeichneten Lage im Gleichgewicht.

Ges.:
*die Lagrange Funktion,
*die Bewegungsgleichung mittels der Methode von Lagrange,
*die Eigenfrequenz f und die Periodendauer T für kleine Auslenkungen um die Gleichgewichtslage.

Die Angabe gibt es wie gewohnt als Download inkl. Endergebnissen.

Wir stellen zuallererst die relevanten Koordinaten auf und drücken sie als Funktion der generalisierten Koordinate (Stangenwinkel) aus. Daraus lassen sich die Geschwindigkeiten bestimmen und anschließend beide Anteile zur Energie, kinetische und potentielle Energie, ermitteln. Die Energien der Federn müssen als Anteil der potentiellen Energie mit berücksichtigt werden. Dann lässt sich aus der Lagrangefunktion die Bewegungsgleichung ableiten und Eigenfrequenz und Periodendauer für den linearisierten Fall bestimmen. Wie immer gibt es die ausführliche Erklärung im verlinkten Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Viel Spaß mit diesem Beispiel und bis bald,
Markus

Statik am Nageleisen – Gleichgewicht

Herzlich Willkommen!

Wir wollen unser Wissen über das statische Gleichgewicht nun einmal auf ein konkretes Problem anwenden: das Entfernen eines Nagels aus einer Wand.

Um einen Nagel aus der Wand zu ziehen ist eine Kraft F erforderlich. Bestimme die kleinste vertikale Kraft P, die auf den Griff des Nageleisens ausgeübt werden muss.

Geg.:
F, a, b, d, α, β

Quelle: Aufgabe 4.163 (S. 222) aus Russell C. Hibbeler, Technische Mechanik 1 Statik, 12. Auflage, 2012 Pearson GmbH, München

Oft ist der wichtigste Schritt zur Lösung eines Problems die grundsätzliche Idee. In diesem Beispiel ist die grundsätzliche Idee Momentengleichgewicht im Punkt A. Dieses Momentengleichgewicht sorgt – in Analogie zum klassischen Hebelgesetz – dafür, dass die Nagelkraft F genau durch die Handkraft P aufgehoben wird. Ein wenig mehr Handkraft und wir können den Nagel herausziehen. Die Details rechne ich wieder im verlinkten Video vor.


Stellt bitte wie immer gerne Fragen, wenn es Unklarheiten gibt. Ich freue mich außerdem über Anregungen zu weiteren Inhalte und generell eure Rückmeldungen. Gebt dem Video auch gerne einen Daumen hoch und abonniert den YouTube Kanal. Vielen Dank für eure Unterstützung!

Bis bald,
Markus

Exzentrischer Stoß zwischen Platte und Rolle

Herzlich Willkommen!

Unser nächstes Stoßbeispiel behandelt einen exzentrischen Stoß zwischen einer Platte und einer fest gelagerten Rolle in der Ebene. Wir sollen uns dabei auch Gedanken darüber machen, welche spezielle Exzentrizität notwendig wäre um nach dem Stoßvorgang eine rein translatorische Bewegung für die Platte zu erreichen.

Betrachtet wird ein exzentrischer Stoß zwischen einer Platte und einer fest gelagerten Rolle.

Geg.:
Platte: m,Is,b.
Sie bewegt sich unmittelbar vor dem Stoß translatorisch mit v unter dem Winkel α gegen die Horizontale.

Rolle: in 0 reibungsfrei gelagert, I0,r.
Vor dem Stoß in Ruhe.

Es handelt sich um einen vollkommen unelastischen, rauen Stoß, d.h. unmittelbar nach dem Stoß haben die Kontaktpunkte den gleichen Geschwindigkeitsvektor.

Ges.:
*Gleichungen zur Bestimmung des Stoßantriebs in 0.
*Wie groß muss e sein, damit sich die Platte unmittelbar nach dem Stoß translatorisch bewegt.

Die Angabe gibt es natürlich auch als Download inkl. Endergebnissen. Ihr könnt damit das Beispiel zuerst selbst rechnen und dann mit meiner Musterlösung vergleichen.

Wir starten wie so oft mit einem Freikörperbild in welches wir alle Geschwindigkeiten und Stoßantriebe einzeichnen. Dabei bietet es sich hier an, die beiden Stoßpartner getrennt frei zu machen. Mittels der Freikörperbilder lassen sich Impuls- und Drehimpulsbilanzen anschreiben. Zusätzlich ist es nötig auch die Kinematik sowie die Bedingung des rauen Stoßvorgangs zu berücksichtigen, um genügend Gleichungen zur Verfügung zu haben. Den Spezialfall reiner Translation für die Platte leiten wir dann mit Hilfe der Kenntnis der Winkelgeschwindigkeit für die Platte ab. Alle Details besprechen und berechnen wir im verlinkten YouTube Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Flugzeugtragfläche: Momente als Vektoren

Herzlich Willkommen!

Diesmal geht es darum zu zeigen, dass auch Momente wie reguläre Vektoren behandelt werden können. Insbesondere können wir sie auf bestimmte Achsen projizieren.

Der Hauptträger einer pfeilförmigen Flugzeugtragfläche ist um den Winkel α gegen die x‘-Achse nach hinten geneigt. In Lastberechnungen wurde ermittelt, dass am Träger die Momente Mx und My angreifen.

Bestimme das resultierende Moment um die x‘- und y‘-Achsen. Alle Achsen liegen in der gleichen horizontalen Ebene.

Quelle: Aufgabe 4.89 (S. 209) aus Russell C. Hibbeler, Technische Mechanik 1 Statik, 12. Auflage, 2012 Pearson GmbH, München

Hier soll bestimmt werden welche Momente parallel bzw. normal zum Hauptholm einer Flugzeugtragfläche wirken. Dazu können die bekannten Momentenvektoren einfach regulär projiziert werden. Es ergibt sich also jeweils ein Anteil von Mx und My sowohl entlang x‘ als auch entlang y‘. Dies ist sehr einfach berechnet, wie ihr im unten verlinkten Video sehen könnt. Viel Spaß beim Nachvollziehen!


Stellt bitte wie immer gerne Fragen, wenn es Unklarheiten gibt. Ich freue mich außerdem über Anregungen zu weiteren Inhalte und generell eure Rückmeldungen. Gebt dem Video auch gerne einen Daumen hoch und abonniert den YouTube Kanal. Vielen Dank für eure Unterstützung!

Bis bald,
Markus

Lagrange: Massen an beweglichem Faden

Herzlich Willkommen!

Diesmal gibt es ein etwas komplexeres Beispiel aus der Dynamik mit drei Freiheitsgraden. Es handelt sich um folgendes System:

Ein masseloser, undehnbarer Faden der Länge L ist an jedem Ende mit einem Massenpunkt der Masse m verbunden. Der Faden wird reibungsfrei durch zwei Ringe A und B im Abstand b geführt.

Bestimme
*die Zwangsbedingung, sowie die generalisierten Koordinaten und Geschwindigkeiten. *die Lagrange-Funktion des Systems.
*die Bewegungsgleichungen des Systems.

Quelle: Lagrangesche Bewegungsgleichungen Aufgabe 1 (S. 236) aus S. Kessel, Technische Mechanik Aufgabensammlung mit Musterlösungen, 2000, Dortmund

Die Angabe gibt es wie gewohnt als Download inkl. Endergebnissen.

Wie immer in der Lagrange-Mechanik müssen wir uns zuallererst Gedanken über die relevanten Koordinaten machen. Dies sind die Koordinaten der Massenschwerpunkte. Hier stellt sich dann heraus, dass sich vier beschreibende Größen ergeben, nämlich die beiden Seilwinkel, sowie die Längen der Seilstücke vom Aufhängepunkt zur jeweiligen Masse. Nachdem das Seil aber als ideal angenommen wird und damit eine konstante Länge besitzt, kann eine der Länge mittels Zwangsbedingung ersetzt werden. Damit landen wir bei drei Freiheitsgraden. Sobald das geklärt ist, können die Geschwindigkeiten abgeleitet und die Energien für das System aufgestellt werden. Danach erhalten wir aus den Euler-Lagrange-Gleichungen drei gekoppelte Bewegungsgleichungen und besprechen wie diese gelöst werden könnten. All das zeige ich wie üblich im unten verlinkten YouTube Video vor. Viel Spaß mit dem Beispiel!

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Viel Spaß mit diesem Beispiel und bis bald,
Markus