Seilstraffung als Stoßvorgang

Herzlich Willkommen!

Wir wollen uns heute ein Beispiel ansehen bei dem zwei Stoßvorgänge hintereinander stattfinden. Der erste ist ein durch Seilstraffung ausgelöster Stoßvorgang, der zweite dann ein klassischer Stoß zwischen Kugel und Quader. Insbesondere die Seilstraffung beinhaltet ein paar interessante Gedankengänge, die wir im Detail besprechen werden. Zuerst allerdings zur Angabe:

Eine Kugel mit der Masse mA, die als Massenpunkt angenähert werden kann, ist über ein schlaffes Seil mit dem Lager C verbunden. Die Kugel wird lt. Skizze aus der Horizontalen im Abstand 3/4 l vom Lager losgelassen. Das Seil wird als undehnbar angenommen, so dass bei der Straffung ein plastischer Stoß (Stoßziffer ε = 0) auftritt. In der Vertikalen trifft das Fadenpendel anschließend vollkommen elastisch (Stoßziffer ε = 1) auf einen Quader der Masse mB und verschiebt diesen auf einer rauen Ebene mit dem Reibungskoeffizient μ.

Geg.:
mA = 2 kg, mB = 5 kg, l = 1.2 m, μ = 0.3

Ges.:
*Geschwindigkeit der Kugel unmittelbar vor der Seilstraffung.
*Geschwindigkeit der Kugel nach dem Straffungsstoß und Stoßantrieb auf das Lager C. *Geschwindigkeit der Kugel unmittelbar vor dem Stoß mit dem Quader. *Geschwindigkeiten von Kugel und Quader unmittelbar nach deren Stoß.
*Die Höhe auf welche die Kugel zurückpendelt und die Strecke um die der Quader verschoben wird.

Quelle: Aufgabe D30 (S. 345f.) aus J. Berger, Klausurentrainer Technische Mechanik, 2. Auflage, 2008 Vieweg+Teubner, Wiesbaden

Die Angabe gibt es wie üblich als Download inkl. Endergebnissen. Ihr könnt damit das Beispiel zuerst selbst rechnen und dann mit meiner Musterlösung vergleichen.

Wir starten dieses Beispiel wieder mit einem Freikörperbild und berechnen insbesondere die Geometrie für den freien Fall der Kugel. Danach diskutieren wir eine Koordinatentransformation die uns die Berechnung des Straffungsstoßes erleichtert. In diesem Zusammenhang besprechen wir auch wie der Straffungsstoß ablaufen wird. Nachdem das geklärt ist, können die Geschwindigkeiten unmittelbar nach dem Stoßvorgang und der Stoßantrieb auf das Lager C berechnet werden. Mittels Energieerhaltung lässt sich dann die Geschwindigkeit der Kugel vor dem Stoß mit dem Quader bestimmen und der elastische Stoß zwischen Kugel und Quader berechnen. Hier führen wir auch eine Plausibilitätskontrolle durch, was immer eine gute Sache ist. Am Ende berechnen wir noch wie weit die Kugel zurückschwingt und wie weit der Quader auf der reibungsbehafteten Unterlage rutscht. Alle Schritte im Detail besprechen und berechnen wir wieder im verlinkten YouTube Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis morgen mit dem nächsten Beispiel,
Markus

Die Themen auf Technische Mechanik – anschaulich erklärt!

Herzlich Willkommen!

Wir widmen uns diesmal der Frage, welche konkreten Themen hier auf der Website und auf meinem YouTube Kanal eigentlich behandelt werden. Das ganze könnt ihr je nach belieben als Video anschauen oder das Transkript lesen, das ich in diesem Beitrag zur Verfügung stelle.

Du wirst dich vielleicht fragen: Welche Inhalte erwarten mich eigentlich auf diesem Kanal oder hier im Blog? Die kurze Antwort würde lauten: Sehr, sehr viele.

Die längere Antwort und um welche Themengebiete es eigentlich geht, sehen wir uns im folgenden an.

Wir sprechen heute über die Inhalte, die ich in Zukunft behandeln werde bzw. schon behandle. Im Wesentlichen geht es um die großen Themengebiete Statik, Festigkeitslehre, Dynamik und höhere Dynamik.

Überblick über alle Themengebiete

In der Statik beschäftigen wir uns zu allererst und etwas außerhalb des Fokus mit der Vektorrechnung, weil das einfach ein sehr, sehr wichtiges Werkzeug ist, das wir brauchen werden. Deshalb hier auch in Blau dargestellt.

Dann geht es um die Kraftreduktion. Also wie reduziere ich ein allgemeines Kraftsystem, so dass eine resultierende Einzelkraft und eventuell ein resultierendes Moment übrig bleibt?

Dann schauen wir uns Momentengleichgewicht an, und was das im Sinne der Kraftreduktion bedeutet. Wir beschäftigen uns mit den Auflagerreaktionen, und natürlich mit den Gleichgewichtsbedingungen, Kräftegleichgewicht, Momentengleichgewicht.

Themengebiete in der Statik

Dann gehen wir einen Schritt weiter und diskutieren Streckenlasten, sehen uns an, wie wir eine Streckenlast ersetzen können durch resultierende Einzelkräfte. Wie das für einfache Streckenlasten funktioniert, wie beispielsweise eine Rechteckslast oder eine Dreieckslast, aber auch für komplexere Streckenlasten, bei denen eine Integration notwendig ist.

Dann machen wir einen kurzen Abstecher zu den Fachwerken, die in der technischen Mechanik, insbesondere im Bauingenieurwesen, natürlich auch eine große Rolle spielen.

Wir beschäftigen uns mit dem Riesenthema Schnittgrößen, und zwar hier im Gegensatz zu vielen Behandlungen, die vielleicht aus der HTL oder anderen technischen Schulen bekannt sind, mit einem Verlauf von Schnittgrößen, also einer Funktion, die über unseren gesamten Träger gilt und nicht nur mit speziellen Schnittgrößen an speziellen Punkten am Träger.

Und zu guter Letzt und vielleicht schon ein wenig in die Festigkeitslehre reichend. Beschäftigen wir uns noch mit der Berechnung von Schwerpunkten von allgemeinen Körpern.


Dann geht es weiter in der Festigkeitslehre.
Dort beginnen wir mit der Definition und der Berechnung von Flächenträgheitsmoment.

Wir schauen uns an, was es mit dem sogenannten Spannungszustand auf sich hat. Wie Spannungen zu charakterisieren sind, den Spannungstensor.

Wir beschäftigen uns mit Materialverhalten. Wozu brauchen wir eigentlich eine Definition des Materialverhaltens und werden uns exemplarisch als eines der einfachsten Materialverhalten, Materialgesetze, das Hook’sche Gesetz – lineare Elastizität – ansehen.

Dann diskutieren wir, was Vergleichsspannungen sind, wofür wir diese brauchen. Warum Vergleichsspannungen so wichtig sind.

Themengebiete in der Festigkeitslehre I

Dann gehen wir sozusagen in die Ebene des Trägers. Beschäftigen uns mit Biegeträgern,
Biegebelastungen. Schauen uns also an, was am Querschnitt eines Trägers passiert und wenden uns auch einem analytischen Verfahren zu, nämlich der Differentialgleichung der Biegelinie. Ein sehr mächtiges Werkzeug zur Berechnung von Verformungen von Trägern.

Ein wichtiger Punkt je nach Fachgebiet kann natürlich auch die Torsion sein. Diese werden wir uns hier für reine Torsion ansehen.

Und am Ende möchten wir uns gerne noch in diesem Abschnitt der Festigkeitslehre ein bisschen Gedanken darüber machen, wie Träger zu dimensionieren sind. Alle Dinge von der Statik begonnen, also von der Reduktion eines Kraftsystems weg, führen uns am Ende zu diesem Kapitel Trägerdimensionierung.

Ein sehr, sehr wichtiges Kapitel aus der technischen Mechanik, das dann auch in weiterführenden Fächern, wie beispielsweise den Maschinenelementen benötigt wird.


Außerdem haben wir dann in der Festigkeitslehre auch noch andere weiterführende Kapitel, die ich gerne diskutieren würde. Nämlich zum Beispiel den Querkraftschub. Energiemethoden, also den Satz von Castigliano und den Satz von Menabrea, die uns auch zur Berechnung statisch unbestimmter Systeme dienen. Die Bredt’schen Formeln, die für
dünnwandige Querschnitte gelten. Und zu guter Letzt beschäftigen wir uns noch ein wenig
mit Stabilität, nämlich mit der Euler’schen Knickung.

Themengebiete in der Festigkeitslehre II

Das ist aber noch nicht alles, sondern wir beschäftigen uns natürlich auch mit der Dynamik. Auch die Dynamik ist ein wichtiger Bestandteil der technischen Mechanik und wir beginnen dort ganz langsam mit der Kinematik.

Punktkinematik, zu allererst, schiefe Würfe. Und dann auch Starrkörper- oder Vektorkinematik, wo dann auch Rotationen von Körpern eine Rolle spielen, weil die Körper eine gewisse Ausdehnung haben. Dort sehen wir dann Dinge wie Kurbeltriebe, Kreuzschieber und andere technisch relevante Anwendungen.

Themengebiete in der Dynamik

Um dann auch die Kräfte und Momente behandeln zu können, die zu dieser Kinematik führen brauchen wir auf dem Weg die Massenträgheitmomente. Wir müssen also definieren, was ist ein Massenträgheitsmoment? Wie berechnet man ein Massenträgheitsmoment und wozu wird es eigentlich verwendet?

Dann können wir in die Kinetik gehen. Auch hier Punktkinetik und Starrkörperkinetik. Also Schwerpunktsatz, sprich Newtonsches Axiom und Drallsatz bzw. Drehimpulssatz.

Und hier am Ende der Einführung zur Dynamik stehen dann noch Schwingungen. Auch das natürlich technisch von höchster Relevanz.


Das war aber auch noch nicht alles, sondern wir beschäftigen uns hier auch mit der höheren Dynamik, in diesem Falle insbesondere mit Dingen wie Relativkinetik.

Die Relativkinetik beginnt ja immer mehr an Bedeutung zu gewinnen. Wenn es zum Beispiel um automatisierte Prozesse in Fabriken geht.

Dann geht es auch um analytische Prinzipien in der Dynamik, nämlich die
Lagrange-Mechanik und den Satz von d’Alembert, wo wir dann auch Systeme mit
mehreren Freiheitsgraden berechnen können. Auch das ist zum Beispiel in der Maschinendynamik eine wichtige Sache, wenn es um die Dämpfung von Schwingungen geht oder auch nur, das Schwingungsverhalten an sich.

Was vielleicht für die eine oder den anderen auch ganz spannend sein kann, nämlich insbesondere, wenn es in Richtung Sachverständigentätigkeit geht, Verkehrsunfälle beispielsweise, sind Stoßvorgänge. Wir werden hier mehrere Stoßvorgänge durchbesprechen, konkrete Beispiele rechnen, auch Beispiele von Autounfällen. Und wir werden dann sehen, dass es hier tatsächlich möglich ist, mit einer sehr guten Genauigkeit zurückzuverfolgen, ob
beispielsweise Verkehrsregeln bei einem Zusammenstoß tatsächlich eingehalten wurden.

Und zu guter Letzt geht es auch noch um die Kreiseldynamik, also um Systeme, die im Allgemeinen um mehrere Achsen rotieren und damit als Kreisel definiert werden können, wo Dinge wie Relativkinetik dann auch in diese Kreiseldynamik hineinspielen. Aber insbesondere ein allgemeiner Drehimpuls- oder Drallsatz notwendig ist. Auch das höchst spannende Systeme, die wir uns auch hier anschauen werden.


Du siehst also, wir werden es im Laufe der Zeit mit einer Vielzahl an verschiedensten Themengebieten in der technischen Mechanik zu tun haben. Ich werde immer versuchen, Theorie und Beispiele zu den jeweiligen Themengebieten zur Verfügung zu stellen. Die Themengebiete werden im Laufe der Zeit in verschiedenen Playlists organisiert sein, sodass du hoffentlich möglichst rasch genau das findest, was du suchst.

Wenn es zu den Inhalten oder allgemein Fragen gibt, dann bitte zögere nicht und stelle die Frage gerne in den Kommentaren. Ich werde wie immer die Frage schnellstmöglich beantworten und freue mich schon darauf.

Hat euch dieser Inhalt gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen und erzählt gerne euren Freund*innen und Kolleg*innen von meinem Angebot. Vielen Dank!

Einen schönen restlichen Tag und bis bald,
Markus

Relativkinetik: Block rutscht auf Keil

Herzlich Willkommen!

Das letzte der nachzuholenden Beispiele ist noch einmal aus der Relativkinetik. Allerdings handelt es sich um eher untypische Relativkinetik. Warum, werden wir weiter unten besprechen. Zuerst aber zur Angabe.

Ein Keil der Masse m2 und des Neigungswinkels α kann sich entsprechend der Abbildung auf einer horizontalen Ebene bewegen. Auf dem Keil befindet sich im höchsten Punkt ein Quader, der aus der Ruhelage heraus reibungsfrei nach unten rutscht.

Geg.:
m1 = 3 kg, m2 = 6 kg, α = 30°, l = 1.2 m

Ges.:
*Beschleunigung des Quaders und des Keils.
*Geschwindigkeit des Quaders und des Keils, wenn der Quader seine tiefste Lage erreicht.
*Verschiebung des Keils, wenn der Quader seine tiefste Lage erreicht.

Quelle: Aufgabe D34 (S. 356) aus J. Berger, Klausurentrainer Technische Mechanik, 2. Auflage, 2008 Vieweg+Teubner, Wiesbaden

Und wie immer die Angabe zum Download:

In der Einleitung habe ich es schon angesprochen: Dieses Beispiel ist etwas unüblich für Relativkinetik. Wir müssen hier nämlich mit den Schwerpunktsätzen starten und können uns erst damit die relevanten Beschleunigungen ausrechnen. Normalerweise ist es umgekehrt. Daher ist besonders hier ein sauberes Freikörperbild essentiell. Zur besseren Veranschaulichung fertigen wir sogar zwei separate Freikörperbilder an. Eines für die Kräfte und eines für die Beschleunigungen. Damit können wir dann die Schwerpunktsätze aufstellen und uns daraus und mit Hilfe kinematischer Zusammenhänge alle gefragten Werte berechnen. Die Rechenschritte im Detail, besprechen wir ausführlich im YouTube Video.

Bei Fragen oder Anmerkungen zu Beispiel oder Rechenweg bitte einfach hier oder auf YouTube einen Kommentar hinterlassen. Ich freue mich auf eure Rückmeldungen.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis morgen mit einer weiteren Einheit zur Theorie,
Markus

Relativkinetik: Paket auf rotierendem Förderband

Herzlich Willkommen!

Heute geht es wieder um ein Beispiel aus der Relativkinetik bzw. genauer gesagt aus der Relativkinematik (weil wir nur Geschwindigkeiten und Beschleunigungen berechnen). Hier ist die Angabe dazu:

Der Ausleger OA eines Transportbandes dreht sich im dargestellten Augenblick mit konstanter Winkelgeschwindigkeit ω1 um die z-Achse und richtet sich gleichzeitig mit konstanter Winkelgeschwindigkeit ω2 auf. Das Transportband selbst bewegt sich mit der Geschwindigkeit r˙ und Beschleunigung r¨.

Geg.:
r=6m, θ=45∘, ω1=6s−1, ω2=4s−1, r˙=5ms−1, r¨=8m/s2

Ges.:
*die momentane Geschwindigkeit des Paketes.
*die momentane Beschleunigung des Paketes.

Quelle: Aufgabe 9.42 (S. 638) aus Russell C. Hibbeler, Technische Mechanik 3 Dynamik, 12. Auflage, 2012 Pearson GmbH, München

Die Angabe zum Download findet ihr hier:

Wie der Name des Beispiels schon sagt, werden wir uns der Kinematik der Relativbewegung bedienen. Dazu überlegen wir uns ein geeignetes Koordinatensystem und stellen den Ortsvektor in diesem Koordinatensystem auf. Dann berechnen wir die Beiträge zur Absolutgeschwindigkeit, nämlich Relativ- und Führungsgeschwindigkeit, und stellen daraus die Absolutgeschwindigkeit für das Paket auf. Zum Schluß berechnen wir aus den Termen Relativ-, Führungs- und Coriolisbeschleunigung die Absolutbeschleunigung des Pakets. Zu allen Ergebnissen gibt es in diesem Fall auch Zahlenwerte. Die Rechenschritte im Detail besprechen wir wieder ausführlich im aktuellen YouTube Video.

Sämtliche Fragen beantworte ich natürlich sehr gerne – schreibt sie mir einfach hier oder auf YouTube als Kommentar.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Lagrange: Massen auf Doppelkeil

Herzlich Willkommen!

Im heutigen Beispiel geht es um die Bewegung zweier Massen auf einem Doppelkeil, die mit einem Seil verbunden sind. Hier berechnen wir auch ausnahmsweise eine Kraft im Rahmen der Lagrange-Mechanik.

Zwei Massen m1 und m2 bewegen sich unter dem Einfluss der Schwerkraft reibungsfrei auf einem Keil. Sie seien durch einen masselosen Faden der Länge l = r1 + r2 miteinander verbunden.

Ges.:
*Formulieren Sie die Zwangsbedingungen. Von welchem Typ sind diese? Wie viele Freiheitsgrade s besitzt das System?
*Wählen Sie passende generalisierte Koordinaten. Geben Sie die Transformationsformeln an.
*Formulieren Sie die Lagrange-Funktion.
*Stellen Sie die Bewegungsgleichung auf und lösen Sie diese unter Berücksichtigung der Randbedingungen r1 (t=0) = r0 und v1(t=0) = 0. Stellen Sie außerdem die Gleichgewichtsbedingung für das System auf.
*Benutzen Sie die Zwangsbedingung der konstanten Fadenlänge nicht als holonome Zwangsbedingung zur Eliminierung von Variablen. Benutzen Sie stattdessen einen Lagrange’schen Multiplikator λ zur Festlegung der Fadenkraft. Wie groß ist diese im Gleichgewicht?

Aufgabe 1.2.11 (S. 51) aus W. Nolting, Grundkurs Theoretische Physik, Bd.2, Analytische Mechanik, 4. verb. Auflage, 1999, Vieweg+Teubner, Wiesbaden

Die Angabe gibt es auch hier wieder als Download inkl. Endergebnissen. Ihr könnt also auch dieses Beispiel zuerst selbst rechnen und dann mit der Musterlösung vergleichen.

In diesem Beispiel zur Lagrange-Mechanik sehen wir uns im Detail an, was Zwangsbedingungen eigentlich sind und wie diese aufgestellt werden. Dann wählen wir anhand dieser Diskussion geeignete generalisierte Koordinaten und stellen wie üblich kinetische und potentielle Energie sowie die Lagrange-Funktion auf. Die Bewegungsgleichung (in diesem Fall ist es nur eine) bestimmen wir aus der Euler-Lagrange-Gleichung und lösen diese dann auch um das Bewegungs-Zeit-Gesetz zu bestimmen. Dann überlegen wir uns wie das allgemeine Gleichgewicht im System aussehen wird. Am Ende bestimmen wir auch noch die Fadenkraft mithilfe eines sogenannten Lagrange-Multiplikators, also unter zu Hilfenahme einer Zwangskraft. Wie diese Rechnung Schritt-für-Schritt funktioniert erkläre ich euch wieder im angehängten YouTube Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Viel Spaß mit diesem Beispiel und bis bald,
Markus

Ebener Stoß zwischen Kugel und Stab

Herzlich Willkommen!

Wie gestern bereits gesagt, werden wir in den nächsten Tagen einige schon auf YouTube gepostete Beispiele nachholen. Das zweite dieser Beispiele ist ein ebener Stoßvorgang zwischen einer Kugel und einem Stab mit folgender Angabe:

Eine als Punktmasse zu betrachtende Kugel mit Masse m1 trifft mit der Geschwindigkeit v1 auf eine im Punkt A frei drehbar gelagerte zylindrische Stange mit der Masse m2 und der Länge L. Vor dem Stoß ist die Stange in Ruhe. Der Stoßpunkt befindet sich im Abstand h vom Lager und die Stoßziffer ist ε.

Geg.:
m_1 = 5 kg, m_2 = 7 kg, L = 0.4 m, ε = 0.7, h = 0.3 m, v_1 = 3 e_x m/s

Ges.:
*die Geschwindigkeit v_1′ der Kugel unmittelbar nach dem Stoß.
*die Winkelgeschwindigkeit ω‘ des Stabes unmittelbar nach dem Stoß.
*der Stoßantrieb S_A auf das Lager in A.

Die Angabe gibt es wie üblich als Download inkl. Endergebnissen. Ihr könnt damit das Beispiel zuerst selbst rechnen und dann mit meiner Musterlösung vergleichen.

Fast immer in der Technischen Mechanik beginnen wir mit einem Freikörperbild. So auch hier. Zusätzlich erkläre ich euch ein wenig theoretischen Hintergrund zum Stoßantrieb. Nachdem das geklärt ist, geht es daran den Drehimpuls vor und nach dem Stoß aufzustellen und den Drehimpulssatz für das Gesamtsystem anzuschreiben. Als zweite Bestimmungsgleichung für das System verwenden wir den Impulssatz, welchen wir ebenfalls für das Gesamtsystem anschreiben. Die dritte und letzte Gleichung ist dann die Newton’sche Stoßhypothese, wofür wir ebenfalls ein wenig Theorie diskutieren. Danach sind wir bereit das Gleichungssystem aufzulösen und die gesuchten Größen zu berechnen. Wie das alles im Detail funktioniert erkläre ich euch wieder im verlinkten YouTube Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis morgen mit dem nächsten Beispiel,
Markus

Lagrange: Schwingung eines physikalischen Doppelpendels

Herzlich Willkommen!

Ich möchte die Gelegenheit nutzen und in den nächsten Tagen Beiträge zu bereits vor dem Neustart des Blogs veröffentlichten Videos nachholen. Wir beginnen mit einem Beispiel zur Lagrange-Mechanik, nämlich dem physikalischen Doppelpendel.

Ein ebenes physikalisches Doppelpendel aus schlanken Stäben mit den Angaben laut Skizze (Stablängen a, Massen m1, m2, Schwerpunktsabstände s1, s2 und Pendelwinkel φ1, φ2) soll betrachtet werden.

Ges.:
*Lagrange-Funktion des Systems.
*Bewegungsgleichungen in den generalisierten Koordinaten φ1 und φ2.
*Wie kann der Spezialfall erreicht werden, dass das unter Pendel keine Relativbewegung zum oberen Pendel vollführt, das System also als einfaches Pendel schwingt?

Die Angabe gibt es auch hier wieder als Download inkl. Endergebnissen. Ihr könnt also das Beispiel zuerst selbst rechnen und dann mit meiner Musterlösung vergleichen.

Wie in der Lagrange-Mechanik üblich stellen wir zuerst die relevanten Koordinaten als Funktion der generalisierten Koordinaten auf. Anschließend können diese Koordinaten nach der Zeit abgeleitet werden um die Geschwindigkeiten zu bestimmen. Die Berechnung der kinetischen und potentiellen Energie des Systems führt schließlich zur Lagrange-Funktion. Über die Euler-Lagrange-Gleichung lassen sich dann die Bewegungsgleichungen berechnen. Am Ende des Beispiels überlegen wir uns wie der Spezialfall einer einfachen Pendelschwingung erreicht werden kann. An dieser Stelle gibt es auch eine spannende historische Anmerkung. Wie die Rechnung detailliert abläuft erkläre ich euch im verlinkten YouTube Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Viel Spaß mit diesem Lagrange Beispiel und bis demnächst,
Markus

Relativkinetik: Masse auf rotierendem Winkelhebel

Herzlich Willkommen!

Heute wollen wir uns ein Beispiel aus der Relativkinetik ansehen. Die Angabe dazu lautet folgendermaßen:

Im betrachteten Augenblick wird eine Punktmasse m durch ein Seil mit der Geschwindigkeit v=const. gegen den gegebenen Winkelhebel bewegt. Der Winkelhebel seinerseits dreht sich mit ω=const. um die Achse durch 0.

Geg.:
l, s, v=const., ω=const., m

Ges.:
*Absolutbeschleunigung der Masse m dargestellt im mitrotierenden e_1, e_2, e_3-Koordinatensystem mit Hilfe der Kinematik der Relativbewegung.
*Kräfte auf die Masse m von Seil und Stange bei reibungsfreier Führung.

Um diese Aufgabe lösen zu können, müssen wir die Kinematik der Relativbewegung nutzen. In einem ersten Schritt bestimmen wir die absolute Beschleunigung der Masse. Anschließend wenden wir den Schwerpunktsatz an um die Kräfte auf die Masse zu berechnen. Wie das genau geht, erkläre ich ausführlich im aktuellen YouTube Video.

Wenn ihr Fragen habt schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen schnellstmöglich beantworten.

Hat euch das Video gefallen? Dann lasst bitte ein Like auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video zu verpassen. Ihr helft mir damit enorm. Vielen Dank!

Bis bald mit dem nächsten Beispiel,
Markus