Lagrange: Schwingender Halbzylinder

Herzlich Willkommen!

Heute geht es in der Lagrange-Mechanik einmal nicht um eine Pendelschwingung, sondern um das Schwingen eines Halbzylinders auf einer festen Unterlage.

Ein Halbzylinder (Masse m, Radius r) wird aus seiner Ruhelage ausgelenkt. Der Schwerpunkt S liegt in einem Abstand von 4r/3π vom Mittelpunkt des Halbkreises entfernt.

Ges.:
*die Bewegungsgleichung des Systems mit Hilfe der Lagrange Gleichungen.
*die linearisierten Bewegungsgleichung und die Schwingungsdauer des Systems.

Die Angabe könnt ihr wie immer hier herunterladen.

In diesem Beispiel sollten wir uns beim Aufstellen der generalisierten Koordinaten ein wenig mehr Zeit nehmen als üblich. Es gibt nämlich eine Kleinigkeit die schnell zu übersehen ist, aber eine fatale Auswirkung auf das Ergebnis hätte. Sind die generalisierten Koordinaten einmal korrekt aufgestellt, kann nicht mehr viel passieren. Wir leiten dann daraus die generalisierten Geschwindigkeiten ab, berechnen kinetische und potentielle Energie und erhalten die Lagrangefunktion. Damit wiederum können wir unsere Bewegungsgleichung berechnen. Am Ende linearisieren wir die Bewegungsgleichung und ermitteln Eigenkreisfrequenz und Periodendauer. Die Details dazu könnt ihr euch im verlinkten Video ansehen.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Viel Spaß mit diesem Beispiel und bis bald,
Markus

Relativkinetik: Masse an Federn in rotierender Scheibe

Herzlich Willkommen!

Heute sehen wir uns eine Masse an, die an beiden Enden mit Federn in der Nut einer rotierenden Scheibe befestigt ist und durch die Drehbewegung der Scheibe schwingt.

In der glatten Nut einer Scheibe, die sich mit der Winkelgeschwindigkeit ω=const. dreht, ist eine Masse m an Federn (Federkonstante c ) befestigt.

Ges.:
*Bewegungsgleichung im bewegten ξ – η System.
*Kraft von der Nut auf die Masse
*Welche Eigenfrequenz stellt sich für die Bewegung der Masse ein?
*Winkelgeschwindigkeit ωcrit, bei der die Masse m mit der Scheibe rotiert, ohne in der Nut hin- und her zu schwingen.

Und wie immer die Angabe zum Download:

Den Anfang macht auch hier ein Freikörperbild um die Geometrie und damit die Beschleunigung sowie die Kräfte auf die Masse definieren zu können. All diese Größen können wir dann mittels relativkinetischen Gleichungen und Schwerpunktsatz berechnen. Die Schritte im Detail, besprechen wir natürlich wieder ausführlich im verlinkten Video.

Bei Fragen oder Anmerkungen zu Beispiel oder Rechenweg bitte einfach hier oder auf YouTube einen Kommentar hinterlassen. Ich freue mich auf eure Rückmeldungen.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis demnächst,
Markus

Lagrange: Block mit Pendel auf schiefer Ebene

Herzlich Willkommen!

Diesmal geht es um ein System aus einem Block und einem mathematischen Pendel. Das Pendel schwingt um den Schwerpunkt des Blocks, während der Block eine schiefe Ebene entlang gleitet.

Ein Block der Masse M gleite reibungsfrei unter dem Einfluss der Schwerkraft auf einer schiefen Ebene mit Neigungswinkel α gegen die Horizontale. An seinem Schwerpunkt sei die Masse m über einen masselosen Faden der Länge l befestigt.

Ges.:
*Wie lautet die Lagrange-Funktion des Systems sowie dessen Bewegungsgleichungen bzgl. s und φ?
*Errechnen Sie eine geschlossene Differentialgleichung für φ(t).
*Geben Sie die Eigenfrequenz ω der Schwingung für M sehr viel größer als m und kleine Winkelausschläge (φ ~ α) an und zeigen Sie, dass φ(t)=α+φsin(ωt+δ) eine gültige Lösung darstellt.

Hinweis: Zur Vereinfachung der Ergebnisse benötigen Sie die Additionstheoreme cos(α−β)=cosαcosβ+sinαsinβ
sin(α−β)=sinαcosβ−cosαsinβ

Quelle: Aufgabe 1.2.12 (S. 51) aus W. Nolting, Grundkurs Theoretische Physik 2, Analytische Mechanik, 2011, Springer, Berlin

Die Angabe gibt es wie gewohnt als Download inkl. Endergebnissen.

Wir stellen zuallererst wieder die relevanten Koordinaten von Block und Pendelmasse auf und drücken sie als Funktion der generalisierten Koordinate (s und Pendelwinkel) aus. Daraus lassen sich die Geschwindigkeiten bestimmen und anschließend beide Anteile zur Energie, kinetische und potentielle Energie, ermitteln. Dann lassen sich aus der Lagrangefunktion die Bewegungsgleichungen ableiten und eine geschlossene Differentialgleichung für den Pendelwinkel anschreiben. Schließlich können wir die geforderte Linearisierung durchführen. Wie immer gibt es die ausführliche Erklärung im verlinkten Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Viel Spaß mit diesem Beispiel und bis bald,
Markus

Inelastischer Stoß: Kugel – Stab

Herzlich Willkommen!

Unser nächstes Stoßbeispiel behandelt einen inelastischen Stoß zwischen einer Kugel und einem Stab bzw. Balken.

Eine Punktmasse m1 trifft mit der Geschwindigkeit v auf einen in A reibungsfrei drehbar gelagerten Balken auf. Der Stoß sei vollkommen unelastisch.

Geg.:
Masse 1: m1, v
Stab: s, l, Masse m2, Trägheitsmoment IA bezüglich A.

Ges.:
*Winkelgeschwindigkeit ω′ des Stabes unmittelbar nach dem Stoß.
*Stoßantrieb im Lager A.
*Endausschlagwinkel ϕE, wenn sich die Punktmasse und der Balken nach dem Stoß nicht trennen.
*Energieverlust beim Stoß.

Quelle: Aufgabe 4.6.2 (S. 48) aus P. Lugner et al., Technische Mechanik, 1992 Springer, Wien

Die Angabe gibt es natürlich auch als Download inkl. Endergebnissen. Ihr könnt damit das Beispiel zuerst selbst rechnen und dann mit meiner Musterlösung vergleichen.

Ausnahmsweise beinhaltet hier die Angabeskizze bereits alle relevanten Größen, mit Ausnahme des Stoßantriebs im Lager. Wir können also direkt darauf zurückgreifen und mittels Impuls- und Drehimpulssatz sowie weniger Überlegungen zur Kinematik, sowohl die Winkelgeschwindigkeit nach dem Stoß als auch den Stoßantrieb im Lager berechnen. Anschließend lassen sich der Endausschlagswinkel und der Energieverlust beim Stoß durch einfache Energiebilanzen ermitteln. Alle Details besprechen und berechnen wir wie gewohnt im verlinkten YouTube Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Lagrange: Block auf zwei Stangen mit Drehfedern

Herzlich Willkommen!

Wir sehen uns heute ein Beispiel aus der Dynamik an, welches mit der Methode von Lagrange berechnet werden soll. Dabei besprechen wir auch, wie Federn in diesem Zusammenhang zu behandeln sind.

Zwei drehbar gelagerte Stangen (Länge l=0.8 m, Masse m2=5 kg) sind an einem Block (Masse m1=12 kg) gelenkig angeschlossen. Am Ende jeder Stange ist eine Torsionsfeder (Federsteifigkeit K=500 Nm) befestigt. Das System ist in der gezeichneten Lage im Gleichgewicht.

Ges.:
*die Lagrange Funktion,
*die Bewegungsgleichung mittels der Methode von Lagrange,
*die Eigenfrequenz f und die Periodendauer T für kleine Auslenkungen um die Gleichgewichtslage.

Die Angabe gibt es wie gewohnt als Download inkl. Endergebnissen.

Wir stellen zuallererst die relevanten Koordinaten auf und drücken sie als Funktion der generalisierten Koordinate (Stangenwinkel) aus. Daraus lassen sich die Geschwindigkeiten bestimmen und anschließend beide Anteile zur Energie, kinetische und potentielle Energie, ermitteln. Die Energien der Federn müssen als Anteil der potentiellen Energie mit berücksichtigt werden. Dann lässt sich aus der Lagrangefunktion die Bewegungsgleichung ableiten und Eigenfrequenz und Periodendauer für den linearisierten Fall bestimmen. Wie immer gibt es die ausführliche Erklärung im verlinkten Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Viel Spaß mit diesem Beispiel und bis bald,
Markus

Exzentrischer Stoß zwischen Platte und Rolle

Herzlich Willkommen!

Unser nächstes Stoßbeispiel behandelt einen exzentrischen Stoß zwischen einer Platte und einer fest gelagerten Rolle in der Ebene. Wir sollen uns dabei auch Gedanken darüber machen, welche spezielle Exzentrizität notwendig wäre um nach dem Stoßvorgang eine rein translatorische Bewegung für die Platte zu erreichen.

Betrachtet wird ein exzentrischer Stoß zwischen einer Platte und einer fest gelagerten Rolle.

Geg.:
Platte: m,Is,b.
Sie bewegt sich unmittelbar vor dem Stoß translatorisch mit v unter dem Winkel α gegen die Horizontale.

Rolle: in 0 reibungsfrei gelagert, I0,r.
Vor dem Stoß in Ruhe.

Es handelt sich um einen vollkommen unelastischen, rauen Stoß, d.h. unmittelbar nach dem Stoß haben die Kontaktpunkte den gleichen Geschwindigkeitsvektor.

Ges.:
*Gleichungen zur Bestimmung des Stoßantriebs in 0.
*Wie groß muss e sein, damit sich die Platte unmittelbar nach dem Stoß translatorisch bewegt.

Die Angabe gibt es natürlich auch als Download inkl. Endergebnissen. Ihr könnt damit das Beispiel zuerst selbst rechnen und dann mit meiner Musterlösung vergleichen.

Wir starten wie so oft mit einem Freikörperbild in welches wir alle Geschwindigkeiten und Stoßantriebe einzeichnen. Dabei bietet es sich hier an, die beiden Stoßpartner getrennt frei zu machen. Mittels der Freikörperbilder lassen sich Impuls- und Drehimpulsbilanzen anschreiben. Zusätzlich ist es nötig auch die Kinematik sowie die Bedingung des rauen Stoßvorgangs zu berücksichtigen, um genügend Gleichungen zur Verfügung zu haben. Den Spezialfall reiner Translation für die Platte leiten wir dann mit Hilfe der Kenntnis der Winkelgeschwindigkeit für die Platte ab. Alle Details besprechen und berechnen wir im verlinkten YouTube Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Lagrange: Massen an beweglichem Faden

Herzlich Willkommen!

Diesmal gibt es ein etwas komplexeres Beispiel aus der Dynamik mit drei Freiheitsgraden. Es handelt sich um folgendes System:

Ein masseloser, undehnbarer Faden der Länge L ist an jedem Ende mit einem Massenpunkt der Masse m verbunden. Der Faden wird reibungsfrei durch zwei Ringe A und B im Abstand b geführt.

Bestimme
*die Zwangsbedingung, sowie die generalisierten Koordinaten und Geschwindigkeiten. *die Lagrange-Funktion des Systems.
*die Bewegungsgleichungen des Systems.

Quelle: Lagrangesche Bewegungsgleichungen Aufgabe 1 (S. 236) aus S. Kessel, Technische Mechanik Aufgabensammlung mit Musterlösungen, 2000, Dortmund

Die Angabe gibt es wie gewohnt als Download inkl. Endergebnissen.

Wie immer in der Lagrange-Mechanik müssen wir uns zuallererst Gedanken über die relevanten Koordinaten machen. Dies sind die Koordinaten der Massenschwerpunkte. Hier stellt sich dann heraus, dass sich vier beschreibende Größen ergeben, nämlich die beiden Seilwinkel, sowie die Längen der Seilstücke vom Aufhängepunkt zur jeweiligen Masse. Nachdem das Seil aber als ideal angenommen wird und damit eine konstante Länge besitzt, kann eine der Länge mittels Zwangsbedingung ersetzt werden. Damit landen wir bei drei Freiheitsgraden. Sobald das geklärt ist, können die Geschwindigkeiten abgeleitet und die Energien für das System aufgestellt werden. Danach erhalten wir aus den Euler-Lagrange-Gleichungen drei gekoppelte Bewegungsgleichungen und besprechen wie diese gelöst werden könnten. All das zeige ich wie üblich im unten verlinkten YouTube Video vor. Viel Spaß mit dem Beispiel!

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Viel Spaß mit diesem Beispiel und bis bald,
Markus

Stangenschuss beim Fußball – Stoßvorgang

Herzlich Willkommen!

Diesmal sehen wir uns ein etwas sportlicheres Beispiel an, nämlich den Stangenschuss beim Fußball. Wir möchten uns überlegen welcher Effet dem Ball mitgegeben werden muss um ihn von der Stange ins Tor zu bekommen.

Ein Fußball mit Masse m und Trägheitsmoment θs trifft mit der Geschwindigkeit v0 horizontal gegen den rauen Pfosten des Tores. Der Aufprall erfolgt dabei zentrisch unter dem Winkel α zur Torlinie. Die Stoßziffer beträgt ε.

Wie groß muss der Effet, d.h. die Winkelgeschwindigkeit ω0 des Balls sein, damit er nach dem Aufprall über die Torlinie geht, wenn während des Stoßes Haftung eintritt?

Quelle: Aufgabe 6.10 (S. 143) aus D. Gross, W. Ehlers, P. Wriggers, Formeln und Aufgaben zur Technischen Mechanik 3, 8. Auflage, 2007 Springer, Berlin

Die Angabe gibt es wie üblich als Download inkl. Endergebnissen. Ihr könnt damit das Beispiel zuerst selbst rechnen und dann mit meiner Musterlösung vergleichen.

Wir starten dieses Beispiel auch diesmal mit einem Freikörperbild in welches wir alle Geschwindigkeiten und Stoßantriebe einzeichnen. Daraus lassen sich Impuls- und Drehimpulssatz für den Ball ableiten. Zusätzlich benötigen wir die Stoßhypothese und einige Überlegungen zur Kinematik während des Stoßvorganges. Aus dem damit erstellten Gleichungssystem lässt sich dann mit wenigen Zusatzüberlegungen zur Geometrie, der benötigte Effet beim Schuss berechnen. Alle Schritte im Detail besprechen und berechnen wir wieder im verlinkten YouTube Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Relativkinetik: Kugel zwischen Platten

Herzlich Willkommen!

In diesem Beispiel zur Relativkinetik geht es um eine Kugel die zwischen zwei parallelen Platten gleiten kann, während die Platten selbst um die vertikale Achse rotieren.

Zwei parallele, starre Platten rotieren mit konstanter Winkelgeschwindigkeit Ω um die raumfeste vertikale z-Achse. Zwischen den Platten kann reibungsfrei eine kleine Kugel (Masse m) gleiten.

Bestimmen Sie die Bewegungsgleichungen des Kugelschwerpunktes in den Koordinaten q1 und q2, sowie die auf Kugel wirkenden Kräfte.

Quelle: Aufgabe D34 (S. 356) aus J. Berger, Klausurentrainer Technische Mechanik, 2. Auflage, 2008 Vieweg+Teubner, Wiesbaden

Und wie immer die Angabe zum Download:

Wir beginnen hier mit der Berechnung des Ortsvektors der Kugel. Anschließend lassen sich die benötigten Geschwindigkeits- und Beschleunigungsterme bestimmen, nämlich Relativgeschwindigkeit und -beschleunigung sowie Führungs- und Coriolisbeschleunigung. Mittels Schwerpunktsatz können wir schließlich die Bewegungsgleichungen des Systems und die auf die Kugel wirkende Normalkraft bestimmen. Die Rechenschritte im Detail, besprechen wir ausführlich im YouTube Video.

Bei Fragen oder Anmerkungen zu Beispiel oder Rechenweg bitte einfach hier oder auf YouTube einen Kommentar hinterlassen. Ich freue mich auf eure Rückmeldungen.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis demnächst,
Markus

Lagrange: Doppelschaukel

Herzlich Willkommen!

Im heutigen Beispiel sehen wir uns die Dynamik einer Doppelschaukel an. Dabei vergleichen wir diese auch mit dem klassischsten aller Lagrange-Beispiele, dem mathematischen Doppelpendel.

Gegeben ist eine Doppelschaukel laut Skizze.

Ges.:
*Die Lagrange-Funktion des Systems.
*Die Bewegungsgleichungen der Doppelschaukel.

Die Angabe zum vorab selbst rechnen gibt es wieder als Download inkl. Endergebnissen.

Bei genauerer Betrachtung der Angabe lässt sich feststellen, dass die skizzierte Doppelschaukel analog zum mathematischen Doppelpendel gerechnet werden kann. Wir stellen also zuerst die Koordinaten der Schaukelschwerpunkte als Funktion der generalisierten Koordinaten, d.h. der beiden Schaukelwinkel, auf. Durch Zeitableitung dieser Koordinaten erhalten wir die Geschwindigkeiten der Schaukelschwerpunkte. Danach können wir sowohl kinetische als auch potentielle Energie berechnen um damit die Lagrangefunktion anzuschreiben. Mithilfe der Euler-Lagrange-Gleichungen erhalten wir schließlich zwei gekoppelte Bewegungsgleichungen für das System, jeweils eine für beide Schaukelwinkel. Die detaillierte Rechnung und viele weitere Bemerkungen, u. A. zur Eindeutigkeit der Lagrangefunktion findet ihr im verlinkten YouTube Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Viel Spaß mit diesem Beispiel und bis bald,
Markus