Lagrange: Block auf zwei Stangen mit Drehfedern

Herzlich Willkommen!

Wir sehen uns heute ein Beispiel aus der Dynamik an, welches mit der Methode von Lagrange berechnet werden soll. Dabei besprechen wir auch, wie Federn in diesem Zusammenhang zu behandeln sind.

Zwei drehbar gelagerte Stangen (Länge l=0.8 m, Masse m2=5 kg) sind an einem Block (Masse m1=12 kg) gelenkig angeschlossen. Am Ende jeder Stange ist eine Torsionsfeder (Federsteifigkeit K=500 Nm) befestigt. Das System ist in der gezeichneten Lage im Gleichgewicht.

Ges.:
*die Lagrange Funktion,
*die Bewegungsgleichung mittels der Methode von Lagrange,
*die Eigenfrequenz f und die Periodendauer T für kleine Auslenkungen um die Gleichgewichtslage.

Die Angabe gibt es wie gewohnt als Download inkl. Endergebnissen.

Wir stellen zuallererst die relevanten Koordinaten auf und drücken sie als Funktion der generalisierten Koordinate (Stangenwinkel) aus. Daraus lassen sich die Geschwindigkeiten bestimmen und anschließend beide Anteile zur Energie, kinetische und potentielle Energie, ermitteln. Die Energien der Federn müssen als Anteil der potentiellen Energie mit berücksichtigt werden. Dann lässt sich aus der Lagrangefunktion die Bewegungsgleichung ableiten und Eigenfrequenz und Periodendauer für den linearisierten Fall bestimmen. Wie immer gibt es die ausführliche Erklärung im verlinkten Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Viel Spaß mit diesem Beispiel und bis bald,
Markus

Statik am Nageleisen – Gleichgewicht

Herzlich Willkommen!

Wir wollen unser Wissen über das statische Gleichgewicht nun einmal auf ein konkretes Problem anwenden: das Entfernen eines Nagels aus einer Wand.

Um einen Nagel aus der Wand zu ziehen ist eine Kraft F erforderlich. Bestimme die kleinste vertikale Kraft P, die auf den Griff des Nageleisens ausgeübt werden muss.

Geg.:
F, a, b, d, α, β

Quelle: Aufgabe 4.163 (S. 222) aus Russell C. Hibbeler, Technische Mechanik 1 Statik, 12. Auflage, 2012 Pearson GmbH, München

Oft ist der wichtigste Schritt zur Lösung eines Problems die grundsätzliche Idee. In diesem Beispiel ist die grundsätzliche Idee Momentengleichgewicht im Punkt A. Dieses Momentengleichgewicht sorgt – in Analogie zum klassischen Hebelgesetz – dafür, dass die Nagelkraft F genau durch die Handkraft P aufgehoben wird. Ein wenig mehr Handkraft und wir können den Nagel herausziehen. Die Details rechne ich wieder im verlinkten Video vor.


Stellt bitte wie immer gerne Fragen, wenn es Unklarheiten gibt. Ich freue mich außerdem über Anregungen zu weiteren Inhalte und generell eure Rückmeldungen. Gebt dem Video auch gerne einen Daumen hoch und abonniert den YouTube Kanal. Vielen Dank für eure Unterstützung!

Bis bald,
Markus

Exzentrischer Stoß zwischen Platte und Rolle

Herzlich Willkommen!

Unser nächstes Stoßbeispiel behandelt einen exzentrischen Stoß zwischen einer Platte und einer fest gelagerten Rolle in der Ebene. Wir sollen uns dabei auch Gedanken darüber machen, welche spezielle Exzentrizität notwendig wäre um nach dem Stoßvorgang eine rein translatorische Bewegung für die Platte zu erreichen.

Betrachtet wird ein exzentrischer Stoß zwischen einer Platte und einer fest gelagerten Rolle.

Geg.:
Platte: m,Is,b.
Sie bewegt sich unmittelbar vor dem Stoß translatorisch mit v unter dem Winkel α gegen die Horizontale.

Rolle: in 0 reibungsfrei gelagert, I0,r.
Vor dem Stoß in Ruhe.

Es handelt sich um einen vollkommen unelastischen, rauen Stoß, d.h. unmittelbar nach dem Stoß haben die Kontaktpunkte den gleichen Geschwindigkeitsvektor.

Ges.:
*Gleichungen zur Bestimmung des Stoßantriebs in 0.
*Wie groß muss e sein, damit sich die Platte unmittelbar nach dem Stoß translatorisch bewegt.

Die Angabe gibt es natürlich auch als Download inkl. Endergebnissen. Ihr könnt damit das Beispiel zuerst selbst rechnen und dann mit meiner Musterlösung vergleichen.

Wir starten wie so oft mit einem Freikörperbild in welches wir alle Geschwindigkeiten und Stoßantriebe einzeichnen. Dabei bietet es sich hier an, die beiden Stoßpartner getrennt frei zu machen. Mittels der Freikörperbilder lassen sich Impuls- und Drehimpulsbilanzen anschreiben. Zusätzlich ist es nötig auch die Kinematik sowie die Bedingung des rauen Stoßvorgangs zu berücksichtigen, um genügend Gleichungen zur Verfügung zu haben. Den Spezialfall reiner Translation für die Platte leiten wir dann mit Hilfe der Kenntnis der Winkelgeschwindigkeit für die Platte ab. Alle Details besprechen und berechnen wir im verlinkten YouTube Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Flugzeugtragfläche: Momente als Vektoren

Herzlich Willkommen!

Diesmal geht es darum zu zeigen, dass auch Momente wie reguläre Vektoren behandelt werden können. Insbesondere können wir sie auf bestimmte Achsen projizieren.

Der Hauptträger einer pfeilförmigen Flugzeugtragfläche ist um den Winkel α gegen die x‘-Achse nach hinten geneigt. In Lastberechnungen wurde ermittelt, dass am Träger die Momente Mx und My angreifen.

Bestimme das resultierende Moment um die x‘- und y‘-Achsen. Alle Achsen liegen in der gleichen horizontalen Ebene.

Quelle: Aufgabe 4.89 (S. 209) aus Russell C. Hibbeler, Technische Mechanik 1 Statik, 12. Auflage, 2012 Pearson GmbH, München

Hier soll bestimmt werden welche Momente parallel bzw. normal zum Hauptholm einer Flugzeugtragfläche wirken. Dazu können die bekannten Momentenvektoren einfach regulär projiziert werden. Es ergibt sich also jeweils ein Anteil von Mx und My sowohl entlang x‘ als auch entlang y‘. Dies ist sehr einfach berechnet, wie ihr im unten verlinkten Video sehen könnt. Viel Spaß beim Nachvollziehen!


Stellt bitte wie immer gerne Fragen, wenn es Unklarheiten gibt. Ich freue mich außerdem über Anregungen zu weiteren Inhalte und generell eure Rückmeldungen. Gebt dem Video auch gerne einen Daumen hoch und abonniert den YouTube Kanal. Vielen Dank für eure Unterstützung!

Bis bald,
Markus

Lagrange: Massen an beweglichem Faden

Herzlich Willkommen!

Diesmal gibt es ein etwas komplexeres Beispiel aus der Dynamik mit drei Freiheitsgraden. Es handelt sich um folgendes System:

Ein masseloser, undehnbarer Faden der Länge L ist an jedem Ende mit einem Massenpunkt der Masse m verbunden. Der Faden wird reibungsfrei durch zwei Ringe A und B im Abstand b geführt.

Bestimme
*die Zwangsbedingung, sowie die generalisierten Koordinaten und Geschwindigkeiten. *die Lagrange-Funktion des Systems.
*die Bewegungsgleichungen des Systems.

Quelle: Lagrangesche Bewegungsgleichungen Aufgabe 1 (S. 236) aus S. Kessel, Technische Mechanik Aufgabensammlung mit Musterlösungen, 2000, Dortmund

Die Angabe gibt es wie gewohnt als Download inkl. Endergebnissen.

Wie immer in der Lagrange-Mechanik müssen wir uns zuallererst Gedanken über die relevanten Koordinaten machen. Dies sind die Koordinaten der Massenschwerpunkte. Hier stellt sich dann heraus, dass sich vier beschreibende Größen ergeben, nämlich die beiden Seilwinkel, sowie die Längen der Seilstücke vom Aufhängepunkt zur jeweiligen Masse. Nachdem das Seil aber als ideal angenommen wird und damit eine konstante Länge besitzt, kann eine der Länge mittels Zwangsbedingung ersetzt werden. Damit landen wir bei drei Freiheitsgraden. Sobald das geklärt ist, können die Geschwindigkeiten abgeleitet und die Energien für das System aufgestellt werden. Danach erhalten wir aus den Euler-Lagrange-Gleichungen drei gekoppelte Bewegungsgleichungen und besprechen wie diese gelöst werden könnten. All das zeige ich wie üblich im unten verlinkten YouTube Video vor. Viel Spaß mit dem Beispiel!

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Viel Spaß mit diesem Beispiel und bis bald,
Markus

Kraftreduktion: Bindungskräfte und -momente am Ski (Statik)

Herzlich Willkommen!

In diesem Beitrag sehen wir uns ein etwas komplizierteres Beispiel zur Kraftreduktion an. Nämlich einen Ski auf dessen Bindungsbacken sowohl Kräfte als auch Momente wirken.

Die Bindungsbacken eines Skis werden mit den Kräften und Momenten Ft = {−50ex+80ey−158ez} N, Fh = {−20ex + 60ey − 250ez} N, Mt = {−6ex + 4ey + 2ez} Nm und Mh = {−20ex + 8ey + 3ez} Nm belastet. Die gegebenen Abstände sind a=120mm und b=800mm.

Bestimme die äquivalente Kraft und das äquivalente Moment im Punkt P. Schreibe das Ergebnis als kartesischen Vektor an.

Quelle: Aufgabe 4.170 (S. 223) aus Russell C. Hibbeler, Technische Mechanik 1 Statik, 12. Auflage, 2012 Pearson GmbH, München

Im Gegensatz zu einem Zentralkraftsystem muss hier auch ein resultierendes Moment im Reduktionspunkt auftreten. Nur dann ist es möglich ein äquivalentes mechanisches System zu erhalten. Dazu müssen sowohl die Kraftvektoren addiert werden, als auch die Einzelmomente aus den Kräften und eingeprägten Momenten errechnet werden. Die detaillierte Rechnung dazu findet ihr wie üblich im verlinkten YouTube Video. Viel Spaß dabei!


Stellt bitte wie immer gerne Fragen, wenn es Unklarheiten gibt. Ich freue mich außerdem über Anregungen zu weiteren Inhalte und generell eure Rückmeldungen.

Bis bald,
Markus

Stangenschuss beim Fußball – Stoßvorgang

Herzlich Willkommen!

Diesmal sehen wir uns ein etwas sportlicheres Beispiel an, nämlich den Stangenschuss beim Fußball. Wir möchten uns überlegen welcher Effet dem Ball mitgegeben werden muss um ihn von der Stange ins Tor zu bekommen.

Ein Fußball mit Masse m und Trägheitsmoment θs trifft mit der Geschwindigkeit v0 horizontal gegen den rauen Pfosten des Tores. Der Aufprall erfolgt dabei zentrisch unter dem Winkel α zur Torlinie. Die Stoßziffer beträgt ε.

Wie groß muss der Effet, d.h. die Winkelgeschwindigkeit ω0 des Balls sein, damit er nach dem Aufprall über die Torlinie geht, wenn während des Stoßes Haftung eintritt?

Quelle: Aufgabe 6.10 (S. 143) aus D. Gross, W. Ehlers, P. Wriggers, Formeln und Aufgaben zur Technischen Mechanik 3, 8. Auflage, 2007 Springer, Berlin

Die Angabe gibt es wie üblich als Download inkl. Endergebnissen. Ihr könnt damit das Beispiel zuerst selbst rechnen und dann mit meiner Musterlösung vergleichen.

Wir starten dieses Beispiel auch diesmal mit einem Freikörperbild in welches wir alle Geschwindigkeiten und Stoßantriebe einzeichnen. Daraus lassen sich Impuls- und Drehimpulssatz für den Ball ableiten. Zusätzlich benötigen wir die Stoßhypothese und einige Überlegungen zur Kinematik während des Stoßvorganges. Aus dem damit erstellten Gleichungssystem lässt sich dann mit wenigen Zusatzüberlegungen zur Geometrie, der benötigte Effet beim Schuss berechnen. Alle Schritte im Detail besprechen und berechnen wir wieder im verlinkten YouTube Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Kraftreduktion: Zentralkraftsystem (Statik)

Herzlich Willkommen!

Diesmal geht es um die Reduktion eines Zentralkraftsystems.

Es ist ein zentrales Kraftsystem laut Skizze gegeben. Ermitteln Sie die Resultierende der vier Kräfte, deren Betrag sowie den Winkel zur Horizontalen.

Geg.: F1 = 60 kN, F2 = 50 kN, F3 = 30 kN, F4 = 40 kN, α = 40°, β = 20°, γ = 20°

Wir berechnen hier zuerst die Komponenten der einzelnen Kräfte in x- und y-Richtung und bestimmen daraus die Komponenten der resultierenden Kraft. Anschließend bauen wir den Vektor der Resultierenden aus den beiden Komponenten zusammen. Zum Schluss berechnen wir noch den Winkel der Resultierenden zur x-Achse. Nebenbei diskutieren wir noch wichtige Punkte bei der Reduktion eines solchen Kraftsystems bzw. allgemein bei der Lösung von Beispielen aus der technischen Mechanik. Die Details dazu gibt es wie immer im verlinkten YouTube Video zu sehen.


Ich hoffe diese erste Aufgabe zur Statik war verständlich und hilfreich. Wenn es Fragen oder Anregungen gibt, bitte schreibt einen Kommentar und ich antworte gerne.

Bis bald,
Markus

Relativkinetik: Kugel zwischen Platten

Herzlich Willkommen!

In diesem Beispiel zur Relativkinetik geht es um eine Kugel die zwischen zwei parallelen Platten gleiten kann, während die Platten selbst um die vertikale Achse rotieren.

Zwei parallele, starre Platten rotieren mit konstanter Winkelgeschwindigkeit Ω um die raumfeste vertikale z-Achse. Zwischen den Platten kann reibungsfrei eine kleine Kugel (Masse m) gleiten.

Bestimmen Sie die Bewegungsgleichungen des Kugelschwerpunktes in den Koordinaten q1 und q2, sowie die auf Kugel wirkenden Kräfte.

Quelle: Aufgabe D34 (S. 356) aus J. Berger, Klausurentrainer Technische Mechanik, 2. Auflage, 2008 Vieweg+Teubner, Wiesbaden

Und wie immer die Angabe zum Download:

Wir beginnen hier mit der Berechnung des Ortsvektors der Kugel. Anschließend lassen sich die benötigten Geschwindigkeits- und Beschleunigungsterme bestimmen, nämlich Relativgeschwindigkeit und -beschleunigung sowie Führungs- und Coriolisbeschleunigung. Mittels Schwerpunktsatz können wir schließlich die Bewegungsgleichungen des Systems und die auf die Kugel wirkende Normalkraft bestimmen. Die Rechenschritte im Detail, besprechen wir ausführlich im YouTube Video.

Bei Fragen oder Anmerkungen zu Beispiel oder Rechenweg bitte einfach hier oder auf YouTube einen Kommentar hinterlassen. Ich freue mich auf eure Rückmeldungen.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis demnächst,
Markus

Kreiseldynamik einer Mischmaschine – Lagerbelastung berechnen

Herzlich Willkommen!

Wir widmen uns wieder einem Kreiselbeispiel. Darin wollen wir heute die Lager einer idealisierten Mischmaschine dynamisch auslegen. Folgendes ist gegeben:

Ein Rotor sei in einem rotierenden Rahmen gelagert. Die Masse des Rotors ist m, seine Massenträgheitsmomente Ix sowie Iy = Iz und seine Winkelgeschwindigkeit relativ zum Rahmen ωR. Für den Rahmen sind die Abmessungen l, der Winkel α sowie seine Winkelgeschwindigkeit Ω und Winkelbeschleunigung Ω˙ gegeben. Alle Lager sind als reibungsfrei anzunehmen.

Ges.:
*Die Bestimmungsgleichungen für die Kräfte auf den Rotor in A und B dargestellt im rahmenfesten x-y-z-System.
*Die relative Winkelbeschleunigung ω˙R des Rotors.

Quelle: Aufgabe 4.4.2 (S. 41) aus P. Lugner et al., Technische Mechanik, 1992 Springer-Verlag, Wien

Die Angabe zum Download findet ihr wie immer hier:

Wie meistens, starten wir mit einem Freikörperbild. Nachdem wir uns darüber im Klaren sind wie die Winkelgeschwindigkeiten im gegeben Koordinatensystem wirken, können wir den Drehimpulsvektor anschreiben. Für den Drehimpulssatz benötigen wir die Zeitableitung dieses Drehimpulsvektors. Diesmal haben wir auch eine nicht verschwindende partielle Zeitableitung. Der zweite Term des Drehimpulssatzes ist der Vektor der äußeren Momente. Die Momente entstehen aus den Lagerkräften und ermöglichen uns damit die Bestimmung eben dieser Lagerkräfte. Am Ende bestimmen wir noch ω_R und stellen fest, dass dessen x-Komponente konstant sein muss. Die Rechenschritte im Detail besprechen wir ausführlich im verlinkten YouTube Video. Viel Spaß damit!

Sämtliche Fragen beantworte ich wie immer sehr gerne – schreibt sie mir bitte einfach hier oder auf YouTube als Kommentar.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald,
Markus