Herzlich Willkommen!

In diesem Lagrange-Beispiel geht es um ein mathematisches Pendel, das an einem horizontal frei beweglichen Aufhängepunkt befestigt ist. Außerdem kann sich die Fadenlänge des Pendels über eine Feder ändern.

Ein mathematisches Pendel mit einer eingearbeiteten Feder ist so befestigt, dass sich sein Aufhängepunkt frei in x-Richtung bewegen kann. Die Feder ist bei r = r0 vollkommen entspannt und ihre Federkonstante sei k.

Bestimme
*die generalisierten Koordinaten und Geschwindigkeiten.
*die Lagrange-Funktion des Systems.
*alle Bewegungsgleichungen des gegebenen Federpendels.

Die Angabe gibt es wie gewohnt zum Download.

Der erste Schritt in beinahe jedem Lagrange-Beispiel ist das Aufstellen der relevanten Koordinaten, hier für die Punktmasse. Wichtig ist zu beachten, dass nicht nur ξ und φ zeitabhängig sind, sondern auch die Pendellänge r aufgrund der Feder. Um das bei unseren Ableitungen nicht zu vergessen bietet es sich an explizit r(t) zu schreiben. Abgesehen davon gibt es eigentlich keine Stolpersteine und wir können durch zeitliches Ableiten wieder die Geschwindigkeiten für die Punktmasse bestimmen. Dann geht es auch schon an die Berechnung von kinetischer und potentieller Energie und schließlich der Lagrangefunktion. Da wir hier drei Freiheitsgrade in Form der generalisierten Koordinaten ξ, φ und r vorliegen haben, erhalten wir durch anwenden der Euler-Lagrange Gleichungen natürlich auch drei Bewegungsgleichungen, nämlich eine in jeder dieser generalisierten Koordinaten. Wichtig ist hier wieder, dass diese Bewegungsgleichungen gekoppelt sein müssen. Andernfalls haben wir bei der Berechnung einen Fehler gemacht und müssten noch einmal nachprüfen. Für eine detaillierte Schritt-für-Schritt Rechnung seht euch bitte wieder das verlinkte Video an und stellt gerne jederzeit Fragen dazu.

Unterstützt bitte auch meine Arbeit durch ein Like und eine Weiterempfehlung der Website und meines YouTube Kanals. Falls ihr es noch nicht getan habt, helft ihr außerdem mit einem Abo des Blogs und des Kanals. Das kostet schließlich nichts. Vielen Dank!

Viel Spaß mit dem Beispiel und bis bald,
Markus

Kommentar verfassen