Herzlich Willkommen!
Diesmal geht es um eine Variation eines Klassikers der Relativkinetik, nämlich eine Masse in einem rotierenden Rahmen, welche zusätzlich an einem Ende mit einer Feder verbunden ist.
In einem Rahmen, der sich nach dem vorgegebenen Winkel-Zeit-Gesetz φ(t) in der xy-Ebene um den raumfesten Punkt 0 dreht, kann reibungsfrei eine Masse m gleiten, die mit einer Feder (Federkonstante c) verbunden ist. In der Lage q=L sei die Feder entspannt.
Berechne bezogen auf die Masse m folgende Größen:
*Ortsvektor des Schwerpunktes
*Relativgeschwindigkeit, FĂĽhrungsgeschwindigkeit und Absolutgeschwindigkeit
*Relativbeschleunigung, FĂĽhrungsbeschleunigung, Coriolisbeschleunigung, Absolutbeschleunigung
*Bewegungsgleichung der Relativbewegung der Masse im rotierenden Bezugssystem.
*Normalkraft als Funktion der kinematischen Größen und der Masse m

Und wie immer die Angabe zum Download:
Wir stellen zuallererst, wie in der Angabe gefordert, den Ortsvektor für die Masse auf. Dann können wir aus Relativ- und Führungsgeschwindigkeit den Vektor der Absolut-geschwindigkeit, sowie aus den Beschleunigungskomponenten eben den Absolut-beschleunigungsvektor berechnen. Mit Hilfe des Schwerpunktsatzes erhalten wir schließlich die Bewegungsgleichung für die Masse und können auch die Normalkraft auf die Masse bestimmen. Eine genaue Anleitung dazu mit den üblichen weiterführenden Erklärungen findest du im angehängten Video.
Bei Fragen oder Anmerkungen zu Beispiel oder Rechenweg bitte einfach hier oder auf YouTube einen Kommentar hinterlassen. Ich freue mich auf eure RĂĽckmeldungen und beantworte gerne alle Fragen.
Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!
Bis bald,
Markus