Stoß: Kerbschlagversuch

Herzlich Willkommen!

Nach langer Pause melde ich mich nun endlich wieder mit einem neuen Beispiel zurück und werde ab sofort wieder regelmäßiger Inhalte zur Verfügung stellen. Heute starten wir mit einem Stoßproblem in das Jahr 2024.

Mit dem Pendelschlagwerk nach Skizze wird die Kerbschlagfestigkeit einer Werkstoffprobe
geprüft. Das Schlagwerk hat die Form eines Hammers. Der Stiel ist ein Stab der Länge l
und der Masse m1. Der Hammerkopf kann angenähert als homogene Kreisscheibe mit dem
Radius r und der Masse m2 aufgefasst werden. Das Schlagpendel wird aus der anfänglichen
Ruhelage unter dem Winkel ϕ0 losgelassen, trifft die Werkstoffprobe in der Senkrechten
und erreicht nach dem Stoß die Umkehrlage bei einem Winkel ϕ3.
Gegeben: m1 = 6kg, m2 = 25kg, l = 0,65m, r = 0,18m, ϕ0 = 70°, ϕ3 = 40°

Quelle: Aufgabe D28 (S. 338) aus J. Berger, Klausurentrainer Technische Mechanik, 2. Auflage, 2008 Vieweg+Teubner, Wiesbaden

Die Angabe gibt es hier wie bei allen Beispielen zum Download.

Dieses Beispiel ist deshalb interessant, weil es sich nur auf den ersten Blick als Stoßbeispiel präsentiert. In Wirklichkeit handelt es sich um ein Problem, dass komplett ohne Stoßbetrachtung berechnet werden kann. Wie das geht zeige ich im verlinkten Video detailliert. Viel Spaß damit!

Bei Fragen könnt ihr jederzeit gerne entweder hier oder auf YouTube einen Kommentar hinterlassen. Ich werde alle Kommentare wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte auch ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen und empfehlt mich gerne weiter. Vielen herzlichen Dank!

Bis bald und alles Gute,
Markus

Stoß: Qualitätskontrolle von Preiselbeeren (Rücksprungtest)

Herzlich Willkommen!

Heute sehen wir uns ein Beispiel aus der Lebensmittelverarbeitung an. Es handelt sich dabei um die Qualitätskontrolle von Preiselbeeren mittels Rücksprungtest.

Erstaunlicherweise werden Preiselbeeren zur Qualitätskontrolle einem Rücksprungtest unterworfen, wobei die Stoßziffer zwischen Beere und Aufprallebene mindestens ϵ betragen muss. Bestimme die Abmessungen d und h zur Positionierung der Schranke C so, dass nur Preiselbeeren welchen den Qualitätskriterien entsprechen in den Auffangbehälter in C gelangen. Die Früchte werden einzeln in A aus der Ruhe losgelassen.

Geg.: ϵ = 0.8, hA = 1m, tan α = 3/4

Die Angabe gibt es hier wie jedesmal zum Download.

Wir starten hier, wie so oft, mit der Energieerhaltung um die Geschwindigkeit der Preiselbeere unmittelbar vor dem Aufprall zu bestimmen. Dann ist wichtig zu beachten, dass die Unterlage als glatt angenommen wird, wir also Impulserhaltung in Tangentialrichtung und die Stoßhypothese in Normalrichtung (bezogen auf die Unterlage) ansetzen können. Mit ein wenig zusätzlicher Kinematik können wir schließlich die Komponenten der Geschwindigkeit unserer Preiselbeere unmittelbar nach dem Stoß als Funktion der Stoßziffer anschreiben. Schließlich müssen wir noch einen schiefen Wurf ansetzen um Abstand und Höhe der Barriere berechnen zu können. Damit sind wir auch schon am Ziel unserer Berechnung angelangt. Im verlinkten Video gibt es wie gewohnt sämtliche Details und Schritte ausführlich erklärt. Viel Spaß damit!

Selbstverständlich gibt es auch wieder den schriftlichen Lösungsweg als Download. Damit könnt ihr einzelne Rechenschritte leichter vergleichen.

Bei Fragen könnt ihr jederzeit gerne entweder hier oder auf YouTube einen Kommentar hinterlassen. Ich werde alle Kommentare wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte auch ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen und empfehlt mich gerne weiter. Vielen herzlichen Dank!

Bis bald und alles Gute,
Markus

Stoß: Kugel stößt exzentrisch mit Platte

Herzlich Willkommen!

Ich hatte über YouTube gefragt ob ihr auch alte Aufnahmen haben wollte und die Antwort war ein klares JA. Damit gibt es hier das erste von etlichen Beispielen die noch mit altem Equipment entstanden sind. Die Videoqualität, sowie auch die Auflösung des elektronischen Whiteboards sind nicht ideal, aber die fachlichen Inhalte sind dennoch wie gewohnt.

In diesem Beispiel geht es um den Stoß einer Kugel mit einer drehbar aufgehängten Platte.

Eine quadratische Platte der Masse mB ist gemäß Skizze bei C drehbar aufgehängt. Im Punkt E im Abstand l von der Aufhängung stößt eine Kugel (punktförmige Masse mA) mit der Geschwindigkeit vA1 gegen die anfangs ruhende Platte. Die Stoßziffer beträgt ϵ.

Geg.: mA=1.2kg, mB=3kg, a=0.6m, l=0.4m, vA1=5ms−1, ϵ=0.8

Ges.:
*Massenträgheitsmoment der Platte bezogen auf den Aufhängepunkt C
*Winkelgeschwindigkeit der Platte und Geschwindigkeit der Kugel unmittelbar nach dem Stoß *Stoßantriebe in den Punkten E und C
*Energieverlust während des Stoßvorganges
*Wie groß müsste die Geschwindigkeit vA1 der Kugel unmittelbar vor dem Stoß sein, damit sich die Platte nach dem Stoß überschlägt?

Die Angabe gibt es hier auch zum Download.

Nachdem hier der innere Stoßantrieb am Punkt E gefragt ist (c), ist es sinnvoll die beiden Stoßpartner getrennt zu betrachten. Wir schreiben also für jeden Impuls- und Drehimpulssatz an, sowie die gemeinsame Stoßhypothese. Damit und mit zwei kinematischen Überlegungen sowie den Massenträgheitsmomenten (auch die Kugel hat um C ein Massenträgheitsmoment!) haben wir bereits ein vollständiges Gleichungsystem vorliegen. Dieses können wir direkt lösen und uns danach noch Gedanken über den Energieverlust bzw. den Fall des Überschlagens machen. Die Details sind wie gewohnt im Video zu finden. Viel Spaß damit!

Selbstverständlich gibt es auch wieder den schriftlichen Lösungsweg als Download. Damit könnt ihr einzelne Rechenschritte leichter vergleichen.

Bei Fragen könnt ihr jederzeit gerne entweder hier oder auf YouTube einen Kommentar hinterlassen. Ich werde alle Kommentare wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte auch ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen und empfehlt mich gerne weiter. Vielen herzlichen Dank!

Bis bald und alles Gute,
Markus

Stoß: Verkehrsunfall auf nasser Fahrbahn

Herzlich Willkommen!

Heute wollen wir Unfallsachverständige spielen und uns folgende Situation ansehen.

Ein PKW (2) schleudert auf nasser Fahrbahn und bleibt quer stehen. Trotz Vollbremsung, also Rutschen mit Reibungskoeffizient μ1, ab der Entfernung s1 prallt der nachfolgende Wagen (1) zentrisch so stark auf, dass der Wagen (2) um die Strecke s2 weiterrutscht, wobei der Reibungskoeffizient μ2 beträgt. Die Stoßzahl ist mit ϵ gegeben.

Geg.: m1 = 2m2, μ1 = μ2 = 1/3, ε = 0.2, s1 = 50m, s2 = 10m

Berechne
*die Geschwindigkeit v0 des Wagens (1) vor dem Bremsen.
*die Geschwindigkeit v1 des Wagens (1) unmittelbar vor dem Zusammenstoß.

Quelle: Aufgabe 6.4 (S. 145) aus D. Gross et al., Formeln und Aufgaben zur Technischen Mechanik 3, 10. erweiterte Auflage, 2012 Springer-Verlag, Berlin Heidelberg

Die Angabe gibt es wie gewohnt auch zum Download.

Der Lösungsweg ist in diesem Fall recht klar. Wir wissen die Strecken s1 und s2, die Massen und Reibungskoeffizienten der PKWs und eine Stoßziffer. Damit können wir auf die Geschwindigkeit schließen, die der PKW 1 unmittelbar vor dem Zusammenstoß hatte und in weiterer Folge auf die Geschwindigkeit mit der das Bremsmanöver eingeleitet wurde. Wir verwenden dazu den Arbeitssatz für die beiden Strecken, sowie Impulsbilanz und Stoßhypothese für den Stoßvorgang selbst. Auflösen dieser Gleichungssysteme liefert dann die gesuchte Ergebnisse. Wie immer erkläre ich im Video genau worauf es bei der Berechnung ankommt. Viel Spaß damit!

Selbstverständlich gibt es auch wieder den schriftlichen Lösungsweg als Download.

Bei Fragen könnt ihr jederzeit gerne entweder hier oder auf YouTube einen Kommentar hinterlassen. Ich werde alle Kommentare wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte auch ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen und empfehlt mich gerne weiter. Vielen herzlichen Dank!

Bis bald und alles Gute,
Markus

Stoß: Projektil trifft auf Scheibe

Herzlich Willkommen!

Wir widmen uns wieder einem Stoßbeispiel. Dieses Mal geht es um ein Projektil das auf eine aufgehängte Scheibe auftrifft und in diese eindringt.

Ein Projektil der Masse mP dringt mit der Geschwindigkeit vP in die Mantelfläche einer Scheibe der Masse mS unter dem Winkel α zur Horizontalen ein. Unmittelbar vor dem Stoß befindet sich die Scheibe in Ruhe.

Geg.: mP = 7g, mS = 5kg, vP = 800m/s, r = 0.2m, α = 30°

Ges.:
*die Winkelgeschwindigkeit ω′S der Scheibe unmittelbar nach dem Eindringen des Projektils.
*der Winkel θ um den die Scheibe schwingt bis sie ihren Umkehrpunkt erreicht hat.

Quelle: Aufgabe x.x (S. xxx) aus Russell C. Hibbeler, Technische Mechanik 3 Dynamik, 12. Auflage, 2012 Pearson GmbH, München

Die Angabe gibt es wie gewohnt auch zum Download.

In diesem Fall bevorzuge ich die Zerlegung des Systems in Projektil und Scheibe und die Einführung eines inneren Stoßantriebs. So können wir einen Impulssatz für das Projektil anschreiben, das wir als Punktmasse betrachten dürfen. Andererseits lässt sich für die Scheibe ein Drehimpulssatz um das Lager aufstellen. Zusätzlich benötigen wir natürlich noch eine kinematische Bedingungen. Diese ist hier jene des rauen Stoßes, also gleiche Geschwindigkeitsvektoren von Projektil und Eindringpunkt unmittelbar nach dem Stoßvorgang. Damit lässt sich dann die Winkelgeschwindigkeit der Scheibe bestimmen. Schließlich können wir über eine einfach Energiebetrachtung noch den Umkehrpunkt der Schwingung bestimmen. Wie das geht besprechen wir im verlinkten Video im Detail. Viel Spaß damit!

Wie auch schon die letzten Male stelle ich zusätzlich wieder ein pdf mit dem vollständigen Lösungsweg zur Verfügung.

Bei Fragen könnt ihr jederzeit gerne entweder hier oder auf YouTube einen Kommentar hinterlassen. Ich werde alle Kommentare wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte auch ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen und empfehlt mich gerne weiter. Vielen herzlichen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Unelastischer Stoß: Punktmasse bleibt in Quader stecken

Herzlich Willkommen!

Im Stoßbeispiel, dass wir uns für heute vornehmen möchten, geht es um ein physikalisches Pendel mit einer Pendelkugel. Diese Pendelkugel wird aus der Ruhe losgelassen und trifft am tiefsten Punkt an eine Wand. Der Stoßvorgang selbst hat dabei eine definierte Stoßziffer ε, ist also weder vollkommen elastisch noch vollkommen plastisch.

Eine Masse m2 stößt vollkommen unelastisch mit der Geschwindigkeit v2 gegen eine ruhende Masse m1, die an zwei gleichlangen, masselosen Pendelstützen aufgehängt ist und verbleibt in ihr. Aus dem Maximalausschlag φ=α soll auf die Geschwindigkeit v2 geschlossen werden, wobei die Wirkungslinie von v2 durch den Schwerpunkt von m1 geht.

Ges.:
*Geschwindigkeit der Massen nach dem Stoß.
*Zusammenhang zwischen dem Winkel α der Umkehrlage und v2
*Energieverlust während dem Stoß

Die Angabe gibt es wie gewohnt zum Download. Somit könnt ihr das Beispiel zuerst selbst rechnen und dann mit der Musterlösung vergleichen.

Zur Lösung dieses Beispiels verwenden wir für den Stoßvorgang selbst eine reine Impulsbilanz, die wir für das Gesamtsystem aufstellen. Nachdem es sich um einen zentrischen Stoß handelt, reicht uns diese Impulsbilanz aus um einen Zusammenhang zwischen der Geschwindigkeit unmittelbar nach dem Stoß mit jener unmittelbar vor dem Stoß herzustellen. Zur Ermittlung des gesuchten Zusammenhangs zwischen der Geschwindigkeit v2 der Punktmasse vor dem Stoß und dem Maximalausschlag der Gesamtmasse danach setzen wir anschließend eine Energieerhaltung an, weil der Schwingvorgang nach dem Stoß ohne Energieverlust passiert. Schließlich können wir den Energieverlust der während des Stoßvorgangs selbst auftritt mittels einer Energiebilanz zwischen den Zeitpunkten unmittelbar vor und unmittelbar nach dem Stoß berechnen. Die Details und weitere Anmerkungen zum Beispiel findet ihr wie immer im verlinkten Video. Viel Freude dabei!

Bei Fragen könnt ihr jederzeit gerne entweder hier oder auf YouTube einen Kommentar hinterlassen. Ich werde alle Kommentare wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte auch ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen und empfehlt mich gerne weiter. Vielen herzlichen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Stoß: Physikalisches Pendel trifft auf Wand

Herzlich Willkommen!

Im Stoßbeispiel, dass wir uns für heute vornehmen möchten, geht es um ein physikalisches Pendel mit einer Pendelkugel. Diese Pendelkugel wird aus der Ruhe losgelassen und trifft am tiefsten Punkt an eine Wand. Der Stoßvorgang selbst hat dabei eine definierte Stoßziffer ε, ist also weder vollkommen elastisch noch vollkommen plastisch.

Das abgebildete Pendel besteht aus einer Vollkugel mit Radius r und Masse mK und einem schlanken Stab mit Länge l und Masse mS. Ein Ende des Stabes ist in A mit Abstand r zur Wand frei drehbar gelagert. Das Pendel wird in der Winkellage θ=θ1 aus der Ruhe freigegeben. Die Stoßziffer ist ε.

Geg.: mK=50kg,mS=20kg,l=2m,r=0.3m,ε=0.6,θ1=0∘

Bestimme den Winkel θ=θ2, bis zu dem das Pendel zurückschwingt nachdem es an der Wand angestoßen ist.

Quelle: Aufgabe 8.52 (S. 582) aus Russell C. Hibbeler, Technische Mechanik 3 Dynamik, 2012 Pearson Deutschland GmbH

Die Angabe gibt es wie gewohnt zum Download. Somit könnt ihr das Beispiel zuerst selbst rechnen und dann mit der Musterlösung vergleichen.

Wir können in diesem Fall die Winkelgeschwindigkeit des Pendels unmittelbar vor dem Stoß mittels Energieerhaltung sehr einfach berechnen. Für den Stoßvorgang selbst ist dann nur noch die Newton’sche Stoßhypothese – also das Verhältnis aus relativer Trennungsgeschwindigkeit zu relativer Annäherungsgeschwindigkeit – relevant, sowie eine kinematische Überlegung aus der wir die Geschwindigkeiten am Stoßpunkt selbst erhalten. Damit lässt sich die Winkelgeschwindigkeit des Pendels unmittelbar nach dem Stoß berechnen. Zum Schluss können wir dann wieder Energieerhaltung anwenden und damit bestimmen wie weit das Pendel zurückschwingt. Schritt für Schritt und anschaulich erklärt gibt es das ganze wieder im verlinkten Video. Viel Spaß dabei!

Bei Fragen könnt ihr jederzeit gerne entweder hier oder auf YouTube einen Kommentar hinterlassen. Ich werde alle Kommentare wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte auch ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen und empfehlt mich gerne weiter. Vielen herzlichen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Exzentrischer Stoß zweier quadratischer Scheiben

Herzlich Willkommen!

Diesmal sehen wir uns einen exzentrischen aber ebenen Stoß zweier quadratischer Scheiben an und überlegen uns, wie ein effizienter Rechenweg für ein solches Problem aussehen kann.

Zwei quadratische Scheiben bewegen sich nicht rotierend und reibungsfrei in der xy-Ebene so aufeinander zu, dass sie genau in den Eckpunkten B1 und B2 zusammenstoßen, wobei die Stoßnormale n=ex sein soll. Die Stoßziffer sei ε. Zusätzlich gegeben sind die eingezeichneten Geschwindigkeiten v1,v2,φ˙1,φ˙2 unmittelbar vor dem Stoß, sowie die Massen der Scheiben m1 und m2.

Ges.:
*Die translatorischen Geschwindigkeiten der Scheibenschwerpunkte v′S1, v′S2, sowie die Winkelgeschwindigkeiten φ˙′1, φ˙′2 der Scheiben unmittelbar nach dem Stoß.

Quelle: Aufgabe 2 (S. 320f.) aus S. Kessel, Technische Mechanik Aufgabensammlung mit Musterlösungen, 2000 Universität Dortmund

Die Angabe gibt es wie gewohnt zum Download. Somit könnt ihr das Beispiel zuerst selbst rechnen und dann mit der Musterlösung vergleichen.

In diesem Problem bewegen sich beide Scheiben vor dem Stoß rein translatorisch aufeinander zu. Nachdem sie aber im Punkt B – also exzentrisch – Stoßen, werde nach dem Stoßvorgang beide Scheiben eine Winkelgeschwindigkeit aufweisen. Außerdem ist zu berücksichtigen, dass wir die Vorzeichen der Geschwindigkeiten und Stoßantriebe korrekt übernehmen. Ich rate in diesem Fall immer dazu zuerst die Geschwindigkeiten positiv anzusetzen und erst nachträglich das tatsächliche Vorzeichen in die Gleichungen einzusetzen. Dadurch passieren meiner Erfahrung nach wesentlich weniger Vorzeichenfehler. Als grundlegende Gleichungen verwenden wir in diesem Problem die Impuls- und Drehimpulssätze der beiden Scheiben, sowie die Stoßhypothese in Kombination mit ebener Kinematik. Die Kinematik ist notwendig, da wir die Stoßhypothese bekanntlich im Stoßpunkt – also hier in B – ansetzen müssen. Die Geschwindigkeit im Punkt B nach dem Stoß ist allerdings durch die Drehbewegung eine andere als im Schwerpunkt. Hier also bitte um besondere Vorsicht. Ich schlage vor ihr seht euch wie gewohnt das verlinkte Video an. Viel Spaß damit!

Bei Fragen könnt ihr jederzeit gerne entweder hier oder auf YouTube einen Kommentar hinterlassen. Ich werde alle Kommentare wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte auch ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen und empfehlt mich gerne weiter. Vielen herzlichen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Stoß: Stabkette trifft auf Anschlag

Herzlich Willkommen!

Im aktuellen Stoßproblem geht es um eine Stabkette aus zwei Stäben, deren oberer Stab beim Stoßvorgang von einem Anschlag gefangen wird. Dadurch wird seine gesamte Energie vom Anschlag aufgenommen, d.h. dissipiert.

Eine aus zwei gleichen, homogenen Stäben bestehende Stabkette trifft in gestreckter Lage mit der Winkelgeschwindigkeit ω auf einen Anschlag B. Nach dem vollkommen plastischen Stoß bleibt der Stab 1 in Ruhe, was für den Stab 2 eine plötzliche Fixierung der Achse 0 bedeutet.

Geg.:
*Abmessungen l, λl
*Masse m der homogenen, dünnen Stäbe
*Winkelgeschwindigkeit ω unmittelbar vor dem Stoß.

Ges.:
*Winkelgeschwindigkeit ω′ des Stabes 2 unmittelbar nach dem Stoß.
*Stoßantrieb SA im Lager A
*Welchen Wert muss λ haben, damit das Lager A stoßfrei bleibt (SA=0)?
*Energieverlust beim Stoß

Quelle: Aufgabe 4.6.5 (S. 49) aus P. Lugner et al., Technische Mechanik, 1992 Springer-Verlag, Wien

Die Angabe gibt es wie gewohnt als Download inkl. Endergebnissen. Ihr könnt damit das Beispiel zuerst selbst rechnen und dann mit meiner Musterlösung vergleichen.

Wir können dieses Problem auf zwei Arten berechnen. Einerseits können wir die Stabkette als ganzes betrachten und andererseits können wir die beiden Stäbe im Gelenk trennen und als getrennte Systeme ansehen. Ich habe mich hier für die zweitere Variante entschieden, weil ich denke, dass diese einfacher nachvollziehbar ist.
Probiert aber natürlich gerne auch die erste Variante aus und überprüft ob die Ergebnisse übereinstimmen. Wichtig ist, dass der obere Stab dann als masselos angenommen werden muss, da ja seine gesamte Rotationsenergie dissipiert wird.
In der getrennten Variante stellen wir einfach Impuls- und Drehimpulssätze für die beiden Stäbe auf. Dabei ist zu beachten, dass sich der Drehpunkt während des Stoßvorgangs ändert. Vor dem Stoß liegt der Drehpunkt im Lager A, nach dem Stoß im Punkt 0. Das ist natürlich relevant für die Kinematik im System. Am besten ihr seht euch wie gewohnt das verlinkte Video an um die ausführliche Erklärung zu erhalten. Viel Spaß damit!

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Stoß zweier Quader inkl. Reibung

Herzlich Willkommen!

Wir wollen uns diesmal einen Stoß zweier Quader ansehen. Bevor jedoch der Stoß passiert wird einer der beiden Quader von einer Feder angestoßen und rutscht reibungsbehaftet eine schiefe Ebene hinab. Nach dem Stoßvorgang rutschen beide Quader reibungsbehaftet weiter bis sie zum Stillstand kommen.

Der Quader A mit der Masse mA wird von einer um den Federweg x vorgespannten Feder mit Federkonstante c abgestoßen und rutscht über eine raue schiefe Ebene mit Steigungswinkel α auf eine raue horizontale Bahn mit Reibungskoeffizient μ für beide Flächen. Dort stößt der Quader A auf einen ruhenden Quader B mit der Masse mB, wobei die Stoßzahl ε beträgt.

Geg.:
mA=100kg, mB=50kg, c=4000N/m, x=0.3m, α=20°, μ=0.2, s1=10m, s2=3m, ε=0.6

Ges.:
*Geschwindigkeit beider Quader unmittelbar nach dem Stoß.
*Entfernung von der Stoßstelle in der die beiden Quader zur Ruhe kommen.

Quelle: Aufgabe D27 (S. 339f.) aus J. Berger, Klausurentrainer Technische Mechanik, 2. Auflage, 2008 Vieweg+Teubner, Wiesbaden

Die Angabe gibt es natürlich auch als Download inkl. Endergebnissen. Ihr könnt damit das Beispiel zuerst selbst rechnen und dann mit meiner Musterlösung vergleichen.

Bevor der Stoßvorgang selbst berechnet werden kann, müssen wir uns einerseits der Energieerhaltung (Federvorspannung) und andererseits dem Arbeitssatz (rutschen auf der reibungsbehafteten Fläche) bedienen. Der Stoßvorgang selbst kann entweder mittels innerem Stoßantrieb (Zerlegung des Vorgangs in zwei einzelne Quader) oder für das Gesamtsystem berechnet werden. Wir sehen uns hier beide Möglichkeiten an und vergleichen diese. Nach dem Stoßvorgang nutzen wir abermals den Arbeitssatz um die Strecken zu berechnen, welche die beiden Quader bis zum Stillstand weiterrutschen. Die Details gibt es wie immer im Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald mit dem nächsten Beispiel,
Markus