Stoß: Projektil trifft auf Scheibe

Herzlich Willkommen!

Wir widmen uns wieder einem Stoßbeispiel. Dieses Mal geht es um ein Projektil das auf eine aufgehängte Scheibe auftrifft und in diese eindringt.

Ein Projektil der Masse mP dringt mit der Geschwindigkeit vP in die Mantelfläche einer Scheibe der Masse mS unter dem Winkel α zur Horizontalen ein. Unmittelbar vor dem Stoß befindet sich die Scheibe in Ruhe.

Geg.: mP = 7g, mS = 5kg, vP = 800m/s, r = 0.2m, α = 30°

Ges.:
*die Winkelgeschwindigkeit ω′S der Scheibe unmittelbar nach dem Eindringen des Projektils.
*der Winkel θ um den die Scheibe schwingt bis sie ihren Umkehrpunkt erreicht hat.

Quelle: Aufgabe x.x (S. xxx) aus Russell C. Hibbeler, Technische Mechanik 3 Dynamik, 12. Auflage, 2012 Pearson GmbH, München

Die Angabe gibt es wie gewohnt auch zum Download.

In diesem Fall bevorzuge ich die Zerlegung des Systems in Projektil und Scheibe und die Einführung eines inneren Stoßantriebs. So können wir einen Impulssatz für das Projektil anschreiben, das wir als Punktmasse betrachten dürfen. Andererseits lässt sich für die Scheibe ein Drehimpulssatz um das Lager aufstellen. Zusätzlich benötigen wir natürlich noch eine kinematische Bedingungen. Diese ist hier jene des rauen Stoßes, also gleiche Geschwindigkeitsvektoren von Projektil und Eindringpunkt unmittelbar nach dem Stoßvorgang. Damit lässt sich dann die Winkelgeschwindigkeit der Scheibe bestimmen. Schließlich können wir über eine einfach Energiebetrachtung noch den Umkehrpunkt der Schwingung bestimmen. Wie das geht besprechen wir im verlinkten Video im Detail. Viel Spaß damit!

Wie auch schon die letzten Male stelle ich zusätzlich wieder ein pdf mit dem vollständigen Lösungsweg zur Verfügung.

Bei Fragen könnt ihr jederzeit gerne entweder hier oder auf YouTube einen Kommentar hinterlassen. Ich werde alle Kommentare wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte auch ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen und empfehlt mich gerne weiter. Vielen herzlichen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Relativkinematik: Drehleiter am bewegten Fahrzeug

Herzlich Willkommen!

Wir sehen uns in diesem Beitrag ein Beispiel zur Relativkinematik an. Es geht dabei um ein Fahrzeug, ein Feuerwehrauto, welches mit einer Drehleiter ausgestattet ist und während der Fahrt die Leiter ausfährt und hochschwenkt. Die Geschwindigkeiten und Beschleunigungen am Leiterende wollen wir bestimmen.

Auf einem mit der konstanten Geschwindigkeit v0 fahrenden Fahrzeug ist eine Leiter montiert, die so bewegt wird, dass b(t)=2v0t und α(t)=Ωt gilt.

Bestimme die Absolutgeschwindigkeit sowie die Absolutbeschleunigung des Punktes C im raumfesten Koordinatensystem ex, ey.

Hier wie gewohnt zuerst einmal die Angabe zum Download:

Dieses Beispiel bietet sich an unterschiedliche Zugänge zur Relativkinematik aufzuzeigen. Genau das machen wir hier. Wir sehen uns einerseits an wie sich Geschwindigkeit und Beschleunigung des Punktes C direkt aus einem Abstandvektor bestimmen lassen und andererseits wie das ganze mittels klassischem Relativkinematik-Zugang funktioniert, also über Relativ- und Führungssystem. Am Ende werden wir feststellen, dass in beiden Fällen das gleiche Ergebnis für die Absolutgeschwindigkeit und -beschleunigung entsteht (muss es ja auch, denn der Physik ist schließlich egal wie wir rechnen), die einzelnen Beiträge sich aber unterscheiden. Wie das alles genau geht und worauf zu achten ist besprechen wir im verlinkten Video. Viel Spaß damit!

Wie schon beim letzten Beispiel gibt es auch hier wieder den Lösungsweg als pdf-Download. Ich würde mich über Rückmeldungen freuen ob ihr diese pdfs auch nutzt bzw. plant zu nutzen.

Bei Fragen oder Anmerkungen zu Beispiel oder Rechenweg bitte einfach hier oder auf YouTube einen Kommentar hinterlassen. Ich freue mich auf eure Rückmeldungen und beantworte gerne alle Fragen.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald,
Markus

Energiesatz: Rollendes Rad an Feder (Schwingung)

Herzlich Willkommen!

Es geht wieder einmal um den Arbeits- und Energiesatz. Wie schon beim letzten Beispiel zu diesem Thema eigentlich nur um den Energiesatz, denn das System ist konservativ, wie die folgende Angabe zeigt.

Ein Rad mit der Masse m und dem Trägheitsradius is rollt ohne zu gleiten. Im entspannten Zustand hat die Feder die Länge l0 und die Federkonstante c. In der skizzierten Position wird das Rad aus der Ruhe freigegeben.
Geg.: m = 60 kg, is = 0.6 m, r = 1 m, l = 3 m, l0 = 0.5 m, c = 10 N/m, β = 60°

Ges.:
*der allgemeine Ausdruck für die Winkelgeschwindigkeit ω des Rades, nachdem es sich um den Winkel β im Uhrzeigersinn verdreht hat.
*der Zahlenwert für diese Winkelgeschwindigkeit ω.

Die Angabe gibt es natürlich wie gewohnt hier als Download.

Die Lösung dieses Beispiels ist an sich recht kurz, erfordert aber einige Überlegungen zur Geometrie. So müssen wir uns insbesondere Gedanken darüber machen wie sich die Federlänge in Abhängigkeit von der Rollbewegung des Rades ändert. Wenn das erledigt ist und wir uns für eine Betrachtung am Momentanpol des Rades entscheiden, ist alles weitere schnell aufgeschrieben. Es gibt in diesem Fall nur eine kinetische Energie der Rotation und die potentiellen Energien der Feder zu Beginn und am Ende. Damit lässt sich leicht die Winkelgeschwindigkeit des Rades als Funktion des Drehwinkels bestimmen. Die Details dazu findest du wie gehabt im verlinkten Video.


Ich beginne ab diesem Beispiel auch damit pdf-Dateien des Lösungsweges bereitzustellen. Falls das für dich interessant ist, hinterlasse mir gerne einen Kommentar, dann kann ich gerne auch bei schon besprochenen Beispielen solche pdfs nachreichen.

Sollten Fragen auftauchen oder ihr Anmerkungen haben, dann zögert bitte nicht mir hier oder auf YouTube einen Kommentar zu hinterlassen. Ich freue mich immer auf eure Rückmeldungen und beantworte sämtlichen Fragen schnell und gerne.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte unbedingt auch ein Like auf YouTube da und abonniert diesen Blog. Außerdem freue ich mich über ein Abo meines YouTube Kanals! Ihr helft mir damit enorm. Vielen Dank!

Viel Spaß mit dem Beispiel und bis bald,
Markus

Lagrange: Dynamik eines hochgeworfenen Seils

Herzlich Willkommen!

Ein sehr interessantes – und oft in der analytischen Mechanik anzutreffendes – Beispiel ist jenes, das wir uns in diesem Beitrag genauer ansehen wollen.

Ein Seil der Länge l wird senkrecht in die Luft geworfen. Es sei voll beweglich, sodass der Knick frei über das Seil laufen kann. Die Seilmasse pro Längeneinheit sei ρ. Die Krümmung der Knickstelle ist als vernachlässigbar anzusehen, d.h. die relevante Bewegung findet nur in x-Richtung statt.

Ges.:
*Finde geeignete generalisierte Koordinaten und stelle die Lagrangefunktion des Systems auf.
*Leite die Bewegungsgleichungen der generalisierten Koordinaten her.
*Wie verhält sich die Geschwindigkeit der Knickstelle, wenn diese das Seilende erreicht?

Die Angabe gibt es wie üblich als Download, damit du dir das Beispiel in Ruhe selbst ansehen kannst.

Auch hier braucht es zu Beginn einen Ansatz für die generalisierten Koordinaten bzw. die Koordinaten der Schwerpunkte der beiden Teilstücke des Seils. Dabei hilft uns wieder eine Zwangsbedingung, nämlich jene konstanter Seillänge. Dann erhalten wir aus den Koordinaten durch Zeitableitung wieder die Geschwindigkeiten der Seilschwerpunkte. Vorsicht ist hier beim Aufstellen der Energien geboten. Nachdem die Knickstelle des Seils ja wandern soll, muss auch die Masse der Teilstücke sich verändern. Wir haben es also erstmals mit einer zeitabhängigen Masse in der kinetischen Energie zu tun. Diese lässt sich allerdings mit der gegebenen Seilmasse pro Längeneinheit relativ einfach aufstellen. Ähnlich gehen wir bei der potentiellen Energie vor, sodass wir schließlich die Lagrangefunktion anschreiben können. Im nächsten Schritt bestimmen wir die Bewegungsgleichungen der Seilenden und können daraus schließlich eine geschlossene Differentialgleichung bauen. Dann wollen wir aber auch noch wissen, wie sich die Geschwindigkeit der Knickstelle verhält. Durch kluge Substitution finden wir eine sehr einfache Differentialgleichung die sich mit ein wenig Aufwand lösen lässt. Schließlich erhalten wir eine sehr einfach Gleichung für die Geschwindigkeit der Knickstelle. Daran ist abzulesen was passiert, wenn wir ein Seilende erreichen. Allerdings möchte ich das hier noch nicht verraten, sondern die Spannung ein wenig aufrecht erhalten. Um das Phänomen zu erfahren das wir hier mathematisch abgeleitet haben, musst du dir schon das Video ansehen. Viel Spaß damit!

Unterstütze bitte meine Arbeit durch ein Like und eine Weiterempfehlung der Website und meines YouTube Kanals. Falls du es noch nicht getan hast, verhilfst du mir außerdem mit einem Abo zu mehr Sichtbarkeit. Vielen Dank vorab!

Viel Spaß mit diesem etwas aufwändigeren Beispiel und bis bald,
Markus