Prinzip von d’Alembert: Rollen & Walzen

Herzlich Willkommen!

Es gab schon längere Zeit kein Beispiel zum Prinzip von d’Alembert. Das wollen wir diesmal ändern.

Gegeben sei das skizzierte System aus Rollen und Massen.

Ges.:
*sämtliche Bewegungsgleichungen des Systems.
*die Beschleunigung der Masse 5m.

Die Angabe gibt es natürlich wieder als Download, damit du das Beispiel vorab selbst rechnen kannst.

In diesem Fall ist zwar sehr einfach aufzustellen welche Koordinaten und Zwangsbedingungen notwendig sind, die Rechnung selbst ist aber etwas aufwändiger. Typischerweise lösen wir ein solches Problem, indem wir das Prinzip von d’Alembert allgemein anschreiben und dann die Zwangsbedingungen einsetzen. Nachdem die Dynamik der Masse 5m gesucht ist, sollten wir lediglich darauf achten die Koordinaten dieser Masse in unseren Gleichungen zu behalten. Anschließend lassen sich mittels Koeffizientenvergleich und auflösen des entstehenden Gleichungssystems direkt die Beschleunigungen der Massen – insbesondere der Masse 5m – bestimmen. Das und noch einige zusätzliche Erklärungen und Nebenbemerkungen findest du im verlinkten YouTube Video. Viel Spaß damit!

Auch die Musterlösung stelle ich, wie gewohnt, als pdf zum Download zur Verfügung.

Wenn ihr Fragen habt schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen schnellstmöglich beantworten.

Hat euch das Video gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Alles Gute und bis bald,
Markus

Relativkinetik: Turmdrehkran mit Last

Herzlich Willkommen!

Diesmal habe ich wieder eine sehr technische Anwendung der Relativkinetik vorbereitet, wie sie vielfach auf den Baustellen dieser Welt tagtäglich vorkommt.

Ein Turmdrehkran lt. Skizze dreht sich anfangs mit der Winkelgeschwindigkeit ω und wird in der Bremszeit tB mit konstanter Winkelverzögerung bis zum Stillstand abgebremst. Die Laufkatze mit der Masse mK befindet sich im Abstand r von der Drehachse und wird durch ein Seil S1 mit der Relativgeschwindigkeit vrel und der Relativbeschleunigung arel nach innen gezogen. Über ein Seil S2 ist eine Last der Masse mL an die Laufkatze angehängt.

Geg.: ω = 0.314s−1, tB = 5s, mK = 200kg, r = 15m, vrel = 1.8ms−1, arel = 0.8ms−2, mL= 300kg

Berechne:
*die Absolutgeschwindigkeit und -beschleunigung der Laufkatze in der gezeichneten Stellung.
*die Kräfte auf die Katze von den Seilen und der Führungsbahn.

Quelle: Aufgabe D35 (S. 358) aus J. Berger, Klausurentrainer Technische Mechanik, 2. Auflage, 2008 Vieweg+Teubner, Wiesbaden

Hier kannst du dir die Angabe herunterladen und das Beispiel zuerst einmal selbst versuchen zu lösen.

Wir gehen bei dieser Aufgabe ganz klassisch vor. Zuerst stellen wir sämtliche Terme zur Absolutgeschwindigkeit auf und berechnen diese. Dann können wir analog vorgehen um die Beiträge zur Absolutbeschleunigung zu finden. Schließlich müssen wir uns darüber im klaren werden, welche Kräfte in die jeweiligen Koordinatenrichtungen wirken. Dazu ist es sinnvoll jeweils ein Freikörperbild der beiden relevanten Schnitte, d.h. von vorne und von oben, anzufertigen. Wichtig ist nämlich zu beachten, dass die Last mL natürlich bei einer solchen Bewegung in beiden Ebenen nicht senkrecht hängen kann. Nachdem das geklärt ist und sämtliche Kräfte mit ihren Komponenten definiert wurden, können wir schließlich den Schwerpunktsatz sowohl für die Laufkatze als auch für die Last anschreiben. Aus diesen insgesamt 6 Gleichungen lassen sich dann sehr einfach sämtliche gesuchten Kräfte berechnen. Wie das genau funktioniert und alle notwendigen Teilschritte zur Lösung erkläre ich wie immer im Video. Viel Spaß!

Musterlösung als pdf gibt es hier leider keine, weil es sich, wie im Video unschwer zu erkennen ist, um eine relativ alte Aufnahme handelt. Tut mir leid.

Sollte es Fragen zu diesem Beispiel geben melde dich bitte jederzeit gerne bei mir. Idealerweise in den Kommentaren, damit auch andere von deiner Frage profitieren.

Wenn dir der Beitrag gefallen hat, hinterlasse bitte ein Like hier auf dem Blog und auf YouTube. Abonniere auch meinen YouTube-Kanal und klicke die Glocke um kein Video mehr zu verpassen. Sag mir bitte außerdem unbedingt deine Meinung zu den Inhalten, damit ich mich entsprechend verbessern kann.

Vielen Dank und bis bald,
Markus

Relativkinetik: Fahrgeschäft am Jahrmarkt

Herzlich Willkommen!

Wir begeben uns mit dem heutigen Beispiel auf den Jahrmarkt. Dort sehen wir uns ein typisches Fahrgerät an und berechnen mit welchen Geschwindigkeiten und vor allem Beschleunigungen als Fahrgast zu rechnen ist. Die Angabe lautet wie folgt.

Ein Karussell besteht aus einem mit der Winkelbeschleunigung αAB um Punkt A rotierenden Arm AB, welcher in der dargestellten Lage die Winkelgeschwindigkeit ωAB besitzt. Ein Wagen ist am Ende des Armes im Punkt B reibungsfrei befestigt und dreht sich zum betrachteten Zeitpunkt mit der Winkelgeschwindigkeit ω′ und der Winkelbeschleunigung α′ um den Punkt B.

Geg.: lAB = 5m, rB = 1m, γ = 30°, β = 60°, ωAB = 2s−1, αAB = 1s−2, ω′ = 0.5s−1, α′ = 0.6s−2

Berechne zum gegebenen Zeitpunkt:
*die Absolutgeschwindigkeit und -beschleunigung des Fahrgastes in C.
*die Absolutgeschwindigkeit und -beschleunigung des Fahrgastes in C für den Fall αAB = α′ = 0.

Quelle: Aufgabe 5.147 (S. 431) aus Russell C. Hibbeler, Technische Mechanik 3 Dynamik, 12. Auflage, 2012 Pearson GmbH, München

Lade dir gerne zuerst die Angabe herunter und versuche das Beispiel selbständig zu lösen. Danach kannst du es mit meiner Musterlösung vergleichen. So lernst du meiner Meinung nach am meisten.

Manchmal ist es bei Aufgabestellungen in der Relativkinematik als auch -kinetik am effizientesten einen Ortsvektor aufzustellen der alle Informationen beinhaltet. Diesen können wir dann einfach nach der Zeit ableiten um die Absolutgeschwindigkeit zu bekommen. Ein zweites mal nach der Zeit ableiten ergibt demnach direkt die Absolutbeschleunigung. Es ist lediglich darauf zu achten, dass alle zeitabhängigen Größen korrekt abgeleitet werden und natürlich auch im ursprünglichen Ortsvektor vorhanden sind. Wir wenden also eigentlich das analytische Prinzip an, aber das ist aus meiner Sicht kein Problem, denn die Lösung ist ja trotzdem völlig korrekt. Im Video und auch in der pdf-Lösung zeige ich dir trotzdem auch den regulären Weg der Relativkinematik auf, sodass du diesen selbst fertigrechnen und dann mit meinem Ergebnis vergleichen kannst. Viel Spaß und zahlreiche Erkenntnisse dabei!

Die Musterlösung als herunterladbares pdf gibt es natürlich ebenfalls wieder.

Sollte es Fragen zu diesem Beispiel geben melde dich bitte jederzeit gerne bei mir. Idealerweise in den Kommentaren, damit auch andere einen Vorteil von deiner Frage haben.

Wenn dir der Beitrag gefallen hat, hinterlasse bitte ein Like hier auf dem Blog und auf YouTube. Abonniere auch meinen YouTube-Kanal und klicke die Glocke um kein Video mehr zu verpassen. Sag mir bitte außerdem unbedingt deine Meinung zu den Inhalten, damit ich mich entsprechend verbessern kann.

Vielen Dank und bis bald,
Markus

Kreisel: Kollermühle

Herzlich Willkommen!

Wir fügen wieder einmal ein Kreiselbeispiel zu unserem Repertoire hinzu. Diesmal geht es um eine der klassischsten Anwendung der Kreiseldynamik, nämlich eine Kollermühle. Wie ihr wahrscheinlich wisst, wird dieses Gerät in der Zerkleinerungstechnik (z.B. um Mehl zu mahlen) verwendet. Warum das überhaupt funktioniert, sollte das heutige Beispiel sehr anschaulich zeigen.

Eine Kollermühle besteht aus einer drehbar gelagerten, dünnen Kreisscheibe (Masse m, Radius ρ0), die über einen masselosen Stab der Länge l=2ρ0 aus der Ruhelage mit konstanter Winkelbeschleunigung α beschleunigt wird, wobei gilt ω0(t)=αt.

Bestimme für reines Rollen zwischen Scheibe und Unterlage:
*das erforderliche äußere Moment M im mit der Scheibe mitrotierenden körperfesten Koordinatensystem e–1-e–2-e–3.
*die Zeit t1, bei der die Anpresskraft zwischen Scheibe und Unterlage FN=2mg beträgt.
*den erforderlichen minimalen Reibungskoeffizienten μ zwischen Scheibe und Unterlage, sodass während des gesamten Beschleunigungsvorganges reines Rollen sichergestellt ist.

Die Angabe zum Download gibt es wie gewohnt hier:

Wir können hier laut Angabe davon ausgehen, dass die Stange masselos ist, weil sie als sehr leicht im Vergleich zur Kreisscheibe angenommen wird. Daher reicht es aus, die relevanten Gleichungen für die Scheibe – allerdings im gegebenen e1-e2-e3-Koordinatensystem – anzuschreiben. Wir benötigen also den Drehimpulssatz der Scheibe. Damit wir diesen aufstellen können, brauchen wir wiederum die Winkelgeschwindigkeit und den Trägheitstensor der Kreisscheibe. Aus dem fertigen Drehimpulssatz lässt sich schließlich sowohl die gesuchte Zeit t1, als auch der minimal notwendige Reibungskoeffizient zwischen Scheibe und Unterlage bestimmen, sodass wir jederzeit reines Rollen haben. Wie immer findest du alle Details im verlinkten Video.

Für diejenigen unter euch die lieber lesen als ein Video anzuschauen gibt es das pdf der fertigen Rechnung hier zum Download.

Bei Fragen meldet euch sehr gerne jederzeit bei mir. Ich versuche alles schnellstmöglich zu beantworten.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald,
Markus

Momentanpol konstruieren – einfaches Beispiel

Herzlich Willkommen!

Wie im Beitrag zur Theorie Momentanpol versprochen gibt es hier nun ein einfaches Anwendungsbeispiel, wie der Momentanpol konstruiert werden kann.

Ermittle die Lage des Momentanpols
a) für die Pleuelstange BC in Abb. a und
b) für die Koppelstange BC in Abb. b.

Quelle: Beispiel 5.10 (S. 373) aus Russell C. Hibbeler, Technische Mechanik 3 Dynamik, 12. Auflage, 2012 Pearson GmbH, München

Die beiden Momentanpole in den Teilaufgaben (a) und (b) lassen sich hier sehr einfach konstruieren indem wir Normalenvektoren auf die Geschwindigkeitsvektoren durch die jeweiligen Angriffspunkte legen. Bei Teilaufgabe (b) stoßen wir allerdings auf einen Spezialfall, den ich im Video genauer erkläre. Viel Spaß dabei!


Wenn ihr ähnliche, vielleicht etwas kompliziertere Aufgaben zum Momentanpol sehen wollt, dann sagt mir bitte in den Kommentaren bescheid. Ich nehme gerne noch weitere Beispiele zu diesem Thema auf.

Alles Gute und bis bald,
Markus

Theorie: Momentanpol in der Kinematik

Herzlich Willkommen!

Ich bin gebeten worden ein Video über den Momentanpol zu machen. Hier ist es. Wir besprechen was der Momentanpol ist und wie wir diesen in der ebenen Kinematik zu unserem Vorteil nutzen können. Außerdem gehen wir die wichtigsten Fälle durch, die bei der Bestimmung des Momentanpols auftreten können.


Parallel zu diesem Beitrag veröffentliche ich auch ein erstes einfaches Beispiel zur Bestimmung des Momentanpols. Weitere Beispiele werden folgen. Solltest du Fragen haben bitte jederzeit gerne melden.
Wenn auch du ein Thema hast, bei dem ich behilflich sein kann, dann melde dich gerne bei mir. Ich werde mich bemühen dein Wunschthema unterzubringen.

Alles Gute und bis bald,
Markus

Relativkinetik: Kiste rutscht auf fahrendem Wagen

Herzlich Willkommen!

Diesmal wollen wir eine Variation des Kistenbeispiels der Relativkinetik besprechen. In diesem Fall haben wir einen fahrenden Wagen auf dessen schiefer Ebene eine Kiste nach unten rutscht. Wir möchten dabei die Dynamik im System berechnen.

Eine Kiste der Masse m gleitet reibungsfrei die geneigte Rampe der Masse m2 entlang, während diese reibungsfrei entlang der horizontalen x-Achse rollen kann. Zum Anfangszeitpunkt t0 = 0 bewegt sich die Rampe mit der konstanten Geschwindigkeit v0 nach rechts, während die Kiste ausgehend vom Punkt A zu gleiten beginnt.

Bestimme
*die Beschleunigungen der Kiste und der Rampe.
*die Geschwindigkeiten von Kiste und Rampe zu jenem Zeitpunkt an dem die Kiste den Punkt B erreicht hat.
*die Verschiebung der Rampe, wenn die Kiste den Punkt B erreicht hat.

Quelle: Aufgabe 11.38 (S. 758) aus Russell C. Hibbeler, Technische Mechanik 3 Dynamik, 12. Auflage, 2012 Pearson GmbH, München

Die Angabe zum Download findest du hier:

Wir gehen hier – wie schon beim Beispiel R04 – den Weg über Freikörperbilder und Schwerpunktsätze. Dazu zeichnen wir jeweils ein Freikörperbild mit den angreifenden Kräften und ein separates mit den wirkenden Beschleunigungen. Mithilfe dieser beiden Skizzen können wir im Anschluss problemlos die Schwerpunktsätze für die Rampe und die Kiste jeweils in x- und y-Richtung anschreiben. Nachdem diese Gleichungen bekannt sind, muss nur noch auf die Beschleunigungen von Kiste und Rampe umgeformt werden um (a) zu beantworten. In einem weiteren Schritt stellen wir dann die kinematischen Beziehungen auf um die Geschwindigkeiten von Kiste und Rampe (b) sowie die Verschiebung der Kiste (c) zu bestimmen. Damit ist dieses Beispiel auch schon erledigt. Wie gewohnt findest du die Details im verlinkten Video oder in der pdf-Musterlösung. Viel Spaß damit!

Ich stehe dir gerne für Fragen zu diesem und allen anderen Beispiel zur Verfügung – scheue dich also nicht davor jederzeit nachzufragen!

Wenn dir der Beitrag gefallen hat, hinterlasse bitte ein Like hier auf dem Blog und auf YouTube da. Abonniere auch meinen YouTube-Kanal um kein Video mehr zu verpassen und sag mir bitte unbedingt deine Meinung zu den Inhalten, damit ich mich entsprechend verbessern kann. Vielen Dank!

Bis bald,
Markus

Kreisel: Rotor in rotierender Gabel

Herzlich Willkommen!

Kreiseldynamik ist derzeit noch eine recht unterrepräsentierte Spezies hier auf der Website. Dies soll sich im Laufe der Zeit ändern, daher gibt es heute wieder einmal ein Kreiselbeispiel mit folgender Angabe.

In einer Gabel, die mit der konstanten Winkelgeschwindigkeit Ω rotiert, ist ein Rotor gelagert, der sich seinerseits mit der konstanten Winkelgeschwindigkeit ωr relativ zur Gabel dreht. Der Rotor besitzt die Hauptträgheitsmomente: Ix = Iy = Iz = I und das Gewicht G. Für die Gabel sind die Abmessungen l1, l2 und l gegeben.

Errechne im gabelfesten xyz−System:
*den Drehimpuls des Rotors bezüglich S.
*die Auflagerkräfte in C und D.
*die Auflagerkräfte in A und B zufolge des Rotors.

Quelle: Aufgabe 4.4.1 (S. 41) aus P. Lugner et al., Technische Mechanik, 1992 Springer-Verlag, Wien

Die Angabe zum Download gibt es wie gewohnt hier:

Es handelt sich in diesem Fall um ein relativ simples Kreiselbeispiel. Nachdem die Rotationen von Rotor und Gabel normal zueinander stehen ergibt sich ein kompakter Drehimpulsvektor, der wiederum zu einem sehr kompakten Drehimpulssatz führt. Anschließend benötigen wir noch den Schwerpunktsatz als zweite Gleichung, der allerdings auch zum Kräftegleichgewicht wird, weil es keine Schwerpunktsbewegung gibt. Damit lassen sich schon alle vier Lagerreaktionen berechnen. Die Schritt-für-Schritt Erklärung findet ihr im Video. Viel Spaß damit.

Für diejenigen unter euch die wieder lieber lesen als ein Video zu schauen gibt es das pdf der fertigen Rechnung.

Sämtliche Fragen beantworte ich wie immer sehr gerne – schreibt sie mir bitte einfach hier oder auf YouTube als Kommentar.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald,
Markus

Energiesatz: Halbzylinderschale rollt auf Unterlage

Herzlich Willkommen!

Es geht wieder einmal um den Arbeits- und Energiesatz. Wie schon bei vorhergehenden Beispielen zur Thematik eigentlich nur um den Energiesatz, denn das System ist konservativ, wie die Angabe vermuten lässt.

Eine dünne Halbzylinderschale der Masse m rollt ohne zu rutschen auf einer Ebene. Die Schale wird dabei aus der dargestellten Lage aus der Ruhe losgelassen.

Bestimme mittels Energiesatz:
*die Winkelgeschwindigkeit φ˙(φ) in Abhängigkeit der Lage φ
*den Winkel φ bei dem die Winkelgeschwindigkeit ihr Maximum erreicht.

Die Angabe als Download gibt es hier. Probiere vielleicht zuerst die Lösung selbst zu finden und schaue dir dann erst meine Musterlösung an. Das hilft in der Regel enorm beim Verständnis.

Wir haben in diesem Fall jeweils die Energien zum Startzeitpunkt sowie für eine beliebige Winkellage aufzustellen. Dafür benötigen wir zuvor die Winkelgeschwindigkeit der Halbzylinderschale (über das analytische Prinzip einfach errechenbar) sowie auch die Lage des Schwerpunkts. Außerdem wird es am einfachsten sein die kinetische Energie der Rotation zu verwenden, also brauchen wir auch noch das Massenträgheitsmoment der Schale. Ist das alles bestimmt lassen sich die Energieterme einfach hinschreiben und über Energieerhaltung miteinander verknüpfen. Damit erhalten wir direkt einen Ausdruck für die Winkelgeschwindigkeit als Funktion des Winkels selbst. Im Detail sprechen wir wieder im Video über die Lösung. Viel Spaß beim Anschauen!


Es gibt natürlich auch wieder die Musterlösung als pdf – lade es gerne herunter.

Solltest du fragen haben bitte schreibe gerne hier oder auf YouTube einen Kommentar. Mich interessiert natürlich auch was du generell zu diesem Beispiel und meiner Musterlösung sagst. Gerne jederzeit melden.

Wenn dir die Website und mein YouTube Kanal weiterhelfen, dann lass mir auch gerne ein Abo da und gib die Links an deine Studienkolleg*innen weiter.

Alles Gute, viel Spaß und bis bald,
Markus

Relativkinetik: Drehkran mit Wagen

Herzlich Willkommen!

Im heutigen Beitrag geht es wieder um einen Klassiker der Relativkinetik, nämlich einen Drehkran mit einem an Seilen geführten Wagen.

Ein Drehkran laut Skizze ist gegeben. Der Wagen (1) darf näherungsweise als Punktmasse m betrachtet werden, deren Ortsvektor r, Geschwindigkeit r˙ und Beschleunigung r¨ gegeben sind, und die zudem abhebesicher und reibungsfrei geführt ist. Der Schwenkarm (2) bewegt sich entlang des Winkels ϕ mit der Winkelgeschwindigkeit ϕ˙ und der Winkelbeschleunigung ϕ¨. Die Drehsäule (3) rotiert mit der Winkelgeschwindigkeit Ω und der Winkelbeschleunigung Ω˙.

Ges.:
*Die Differenz der Seilkräfte S2−S1.
*Die Kraft des Schwenkarmes auf den Wagen.

Hier wie gewohnt zuerst einmal die Angabe zum Download:

Dieses Beispiel ist ziemlich Standard, was den Rechenweg betrifft. Wir müssen uns nur zuerst auf ein Relativsystem festlegen. Zwei offensichtliche Möglichkeiten dafür bespreche ich im Video. Danach stellen wir den Ortsvektor sowie den Vektor der Führungsrotation auf und bestimmen sämtliche Beschleunigungen. Im Anschluss rechnen wir über den Schwerpunktsatz die gesuchten Kräfte aus. Klingt einfach? Ist es im Grunde auch. Die Details zur Rechnung erfahrt ihr wie immer im Video. Wenn ihr lieber zuerst selbst grübelt, könnt ihr natürlich auch gerne den Rechenweg als pdf herunterladen. Viel Spaß mit dem Beispiel!

Bei Fragen oder Anmerkungen zu Beispiel oder Rechenweg seid ihr herzlich eingeladen einen Kommentar zu hinterlassen. Ich freue mich jederzeit über Fragen.

Hat euch dieser Beitrag gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Wenn ich euch bei einem konkreten Problem helfen konnte, bitte sagt in den Kommentaren bescheid – ich würde sehr gerne wissen auf welche verschiedenen Arten die Inhalte hier nützlich sind. Abonniert auch unbedingt meinen YouTube-Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald,
Markus