In diesem Fall ist zwar sehr einfach aufzustellen welche Koordinaten und Zwangsbedingungen notwendig sind, die Rechnung selbst ist aber etwas aufwändiger. Typischerweise lösen wir ein solches Problem, indem wir das Prinzip von d’Alembert allgemein anschreiben und dann die Zwangsbedingungen einsetzen. Nachdem die Dynamik der Masse 5m gesucht ist, sollten wir lediglich darauf achten die Koordinaten dieser Masse in unseren Gleichungen zu behalten. Anschließend lassen sich mittels Koeffizientenvergleich und auflösen des entstehenden Gleichungssystems direkt die Beschleunigungen der Massen – insbesondere der Masse 5m – bestimmen. Das und noch einige zusätzliche Erklärungen und Nebenbemerkungen findest du im verlinkten YouTube Video. Viel Spaß damit!
Auch die Musterlösung stelle ich, wie gewohnt, als pdf zum Download zur Verfügung.
Wenn ihr Fragen habt schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen schnellstmöglich beantworten.
Hat euch das Video gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!
Wir fügen wieder einmal ein Kreiselbeispiel zu unserem Repertoire hinzu. Diesmal geht es um eine der klassischsten Anwendung der Kreiseldynamik, nämlich eine Kollermühle. Wie ihr wahrscheinlich wisst, wird dieses Gerät in der Zerkleinerungstechnik (z.B. um Mehl zu mahlen) verwendet. Warum das überhaupt funktioniert, sollte das heutige Beispiel sehr anschaulich zeigen.
Eine Kollermühle besteht aus einer drehbar gelagerten, dünnen Kreisscheibe (Masse m, Radius ρ0), die über einen masselosen Stab der Länge l=2ρ0 aus der Ruhelage mit konstanter Winkelbeschleunigung α beschleunigt wird, wobei gilt ω0(t)=αt.
Bestimme für reines Rollen zwischen Scheibe und Unterlage: *das erforderliche äußere Moment M im mit der Scheibe mitrotierenden körperfesten Koordinatensystem e–1-e–2-e–3. *die Zeit t1, bei der die Anpresskraft zwischen Scheibe und Unterlage FN=2mg beträgt. *den erforderlichen minimalen Reibungskoeffizienten μ zwischen Scheibe und Unterlage, sodass während des gesamten Beschleunigungsvorganges reines Rollen sichergestellt ist.
Wir können hier laut Angabe davon ausgehen, dass die Stange masselos ist, weil sie als sehr leicht im Vergleich zur Kreisscheibe angenommen wird. Daher reicht es aus, die relevanten Gleichungen für die Scheibe – allerdings im gegebenen e1-e2-e3-Koordinatensystem – anzuschreiben. Wir benötigen also den Drehimpulssatz der Scheibe. Damit wir diesen aufstellen können, brauchen wir wiederum die Winkelgeschwindigkeit und den Trägheitstensor der Kreisscheibe. Aus dem fertigen Drehimpulssatz lässt sich schließlich sowohl die gesuchte Zeit t1, als auch der minimal notwendige Reibungskoeffizient zwischen Scheibe und Unterlage bestimmen, sodass wir jederzeit reines Rollen haben. Wie immer findest du alle Details im verlinkten Video.
Für diejenigen unter euch die lieber lesen als ein Video anzuschauen gibt es das pdf der fertigen Rechnung hier zum Download.
Bei Fragen meldet euch sehr gerne jederzeit bei mir. Ich versuche alles schnellstmöglich zu beantworten.
Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!
Kreiseldynamik ist derzeit noch eine recht unterrepräsentierte Spezies hier auf der Website. Dies soll sich im Laufe der Zeit ändern, daher gibt es heute wieder einmal ein Kreiselbeispiel mit folgender Angabe.
In einer Gabel, die mit der konstanten Winkelgeschwindigkeit Ω rotiert, ist ein Rotor gelagert, der sich seinerseits mit der konstanten Winkelgeschwindigkeit ωr relativ zur Gabel dreht. Der Rotor besitzt die Hauptträgheitsmomente: Ix = Iy = Iz = I und das Gewicht G. Für die Gabel sind die Abmessungen l1, l2 und l gegeben.
Errechne im gabelfesten xyz−System: *den Drehimpuls des Rotors bezüglich S. *die Auflagerkräfte in C und D. *die Auflagerkräfte in A und B zufolge des Rotors.
Quelle: Aufgabe 4.4.1 (S. 41) aus P. Lugner et al., Technische Mechanik, 1992 Springer-Verlag, Wien
Es handelt sich in diesem Fall um ein relativ simples Kreiselbeispiel. Nachdem die Rotationen von Rotor und Gabel normal zueinander stehen ergibt sich ein kompakter Drehimpulsvektor, der wiederum zu einem sehr kompakten Drehimpulssatz führt. Anschließend benötigen wir noch den Schwerpunktsatz als zweite Gleichung, der allerdings auch zum Kräftegleichgewicht wird, weil es keine Schwerpunktsbewegung gibt. Damit lassen sich schon alle vier Lagerreaktionen berechnen. Die Schritt-für-Schritt Erklärung findet ihr im Video. Viel Spaß damit.
Für diejenigen unter euch die wieder lieber lesen als ein Video zu schauen gibt es das pdf der fertigen Rechnung.
Sämtliche Fragen beantworte ich wie immer sehr gerne – schreibt sie mir bitte einfach hier oder auf YouTube als Kommentar.
Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!
Das letzte Beispiel zur Kreiseldynamik ist schon eine ganze Weile her, deshalb wollen wir uns heute wieder einmal ein solches ansehen.
Ein zylindrischer, homogener Stab (kein dünner Stab) ist in einer rotierenden Gabel reibungsfrei drehbar gelagert und über eine Drehfeder mit dieser verbunden.
Geg.: homogener Stab: Länge l, Durchmesser 2r, Masse m lineare Drehfeder: Drehfederkonstante cT, vollkommen entspannt bei ϕ=0 Gabel: Winkelgeschwindigkeit Ω, die durch ein entsprechendes Antriebsmoment MA konstant gehalten wird.
Ges.: *Wie groß darf Ω höchstens sein, damit der Stab für kleine Winkel ϕ eine Schwingung ausführt? *Welchen Wert muss das Antriebsmoment MA(ϕ) bei reibungsfreier Lagerung der Gabel annehmen. Anfangsbedingung: ϕ=0, ϕ˙=ν
Hinweis: Verwenden Sie die Euler’schen Kreiselgleichungen.
Quelle: Aufgabe 4.4.4 (S. 42) aus P. Lugner et al., Technische Mechanik, 1992 Springer-Verlag, Wien
Die Angabe zum Download gibt es wie gewohnt ihr hier:
Wie immer ist es wichtig sich anhand einer Skizze, d.h. eines Freikörperbilds bewusst zu machen, welche Kräfte und Momente sowie Geschwindigkeiten und Beschleunigungen im System wirken. Dann können wir hier auch schon die Euler’schen Kreiselgleichungen anschreiben, deren einzelne Terme bestimmen und in die allgemeine Form der Gleichungen einsetzen. Dadurch gelangen wir zu einem Gleichungssystem aus dem wir eine Bewegungsgleichung erhalten. Am Ende müssen wir uns noch darüber Gedanken machen, wann es sich bei dieser Bewegungsgleichung um eine Schwingungsgleichung handelt. All das besprechen wir wieder in voller Schönheit im verlinkten Video.
Sämtliche Fragen beantworte ich wie immer sehr gerne – schreibt sie mir bitte einfach hier oder auf YouTube als Kommentar.
Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!
Heute sehen wir uns wieder einmal ein Beispiel zum Prinzip von d’Alembert an.
Eine Platte der Masse M ruht auf zwei Walzen, die jeweils die Masse m und den Radius r besitzen. Die linke Walze ist als Vollzylinder, die rechte als dünnwandiger Hohlzylinder ausgeführt.
Ges.: *Bestimme die Beschleunigung der Platte unter der Annahme, dass kein Gleiten auftritt, mit Hilfe des Prinzips von d’Alembert.
Die Angabe gibt es natürlich wieder als Download inkl. Endergebnissen, damit ihr das Beispiel vorab selbst rechnen könnt.
Diese rechnerisch eher kurze Aufgabe eignet sich sehr gut dazu das Prinzip von d’Alembert genauer zu erklären. Wir diskutieren also welche Beiträge es gibt und woher diese kommen. Außerdem klären wir was es mit den d’Alembert’schen Trägheitstermen und Trägheitskräften auf sich hat. Im Zuge dessen rechnen wir selbstverständlich auch die gefragte Beschleunigung des Brettes aus. Das und noch einiges mehr gibt es wieder im verlinkten YouTube Video zu sehen. Viel Spaß damit!
Wenn ihr Fragen habt schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen schnellstmöglich beantworten.
Hat euch das Video gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!
Wir widmen uns wieder einem Kreiselbeispiel. Darin wollen wir heute die Lager einer idealisierten Mischmaschine dynamisch auslegen. Folgendes ist gegeben:
Ein Rotor sei in einem rotierenden Rahmen gelagert. Die Masse des Rotors ist m, seine Massenträgheitsmomente Ix sowie Iy = Iz und seine Winkelgeschwindigkeit relativ zum Rahmen ωR. Für den Rahmen sind die Abmessungen l, der Winkel α sowie seine Winkelgeschwindigkeit Ω und Winkelbeschleunigung Ω˙ gegeben. Alle Lager sind als reibungsfrei anzunehmen.
Ges.: *Die Bestimmungsgleichungen für die Kräfte auf den Rotor in A und B dargestellt im rahmenfesten x-y-z-System. *Die relative Winkelbeschleunigung ω˙R des Rotors.
Quelle: Aufgabe 4.4.2 (S. 41) aus P. Lugner et al., Technische Mechanik, 1992 Springer-Verlag, Wien
Die Angabe zum Download findet ihr wie immer hier:
Wie meistens, starten wir mit einem Freikörperbild. Nachdem wir uns darüber im Klaren sind wie die Winkelgeschwindigkeiten im gegeben Koordinatensystem wirken, können wir den Drehimpulsvektor anschreiben. Für den Drehimpulssatz benötigen wir die Zeitableitung dieses Drehimpulsvektors. Diesmal haben wir auch eine nicht verschwindende partielle Zeitableitung. Der zweite Term des Drehimpulssatzes ist der Vektor der äußeren Momente. Die Momente entstehen aus den Lagerkräften und ermöglichen uns damit die Bestimmung eben dieser Lagerkräfte. Am Ende bestimmen wir noch ω_R und stellen fest, dass dessen x-Komponente konstant sein muss. Die Rechenschritte im Detail besprechen wir ausführlich im verlinkten YouTube Video. Viel Spaß damit!
Sämtliche Fragen beantworte ich wie immer sehr gerne – schreibt sie mir bitte einfach hier oder auf YouTube als Kommentar.
Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!
Die Mathematik ist die Sprache der technischen Mechanik und die Vektorrechnung ist ein wichtiger Teil davon. Wir sehen uns in diesem Beitrag an wie wir Vektoren zeitsparend anschreiben können und stoßen dabei auf die sogenannte Tensornotation.
Außerdem diskutieren wir was ein Vektor überhaupt ist, was es mit Koordinatensystemen und Einheitsvektoren auf sich hat und wie wir die Komponenten eines Vektors in einem Koordinatensystem bestimmen können.
Schließlich besprechen wir auch noch wie der Betrag eines Vektors in der ebene und auch im Raum bestimmt werden kann. Natürlich gibt es noch zahlreiche weitere Möglichkeiten mit Vektoren zu rechnen. Diese schauen wir uns dann in den folgenden Beiträgen zur Vektorrechnung an und erarbeiten uns damit die mathematische Basis für die technische Mechanik.
Du hast vielleicht im Urlaub schon einmal mit jemandem gesprochen, der nicht deine eigene Sprache spricht. Hat das gut funktioniert? Vielleicht kann man sich mit Englisch behelfen, wenn beide Englisch können. Aber besser wäre es doch, wenn beide dieselbe Sprache sprechen.
Und genau das gleiche gilt für die technische Mechanik. Die Sprache der technischen Mechanik ist die Mathematik. Und ein sehr wichtiger Teil der Mathematik, den wir insbesondere zu Beginn der technischen Mechanik brauchen, ist die Vektorrechnung.
Wie schreiben wir einen Vektor eigentlich auf?
Insbesondere in der technischen Mechanik haben wir eine Notation, die vielleicht ein bisschen davon abweicht, was du gewohnt bist. Es geht darum, dass wir verschiedene Größen haben. Wir können Skalare haben, wir können Vektoren haben, wir können Matrizen haben und wir wollen all diese Größen in eine gemeinsame Notation zusammenfassen.
Wir beginnen also bei Null, nämlich bei einem Skalar. Wir haben auch in der Mechanik skalare Größen, nämlich Masse, Länge, Flächeninhalte, Volumina und so weiter. Alle skalaren Größen haben gemeinsam, dass sie als Zahl ausdrückbar sind. Wir fassen das alles was wir jetzt besprechen zusammen in die sogenannte Tensornotation. Wir haben hier bei den Skalaren sogenannte Tensoren 0. Stufe. Deswegen auch vorher der Hinweis: Wir beginnen bei Null – Tensor 0.Stufe.
Wir haben aber nicht nur Skalare, sondern wir haben natürlich auch Vektoren in der technischen Mechanik. Also z.B. einen Kraftvektor, einen Momentenvektor, einen Abstandsvektor r, aber auch in der Dynamik, einen Geschwindigkeitsvektor oder einen Beschleunigungsvektor. Und so weiter. Bei den Vektoren wissen wir, diese haben Betrag und Richtung und natürlich eine Wirkungslinie. Wir besprechen das dann gleich im Detail. Wir können einen Vektor also in Komponenten ausdrücken. Und der Vektor ist ein Tensor erster Stufe.
Und dann gibt es in der Mechanik natürlich auch noch Größen wie Spannungen, Dehnungen. Und die werden als Matrix entsprechend angeschrieben. Nämlich, eine Dehnungsmatrix, Dehnungstensor Epsilon Spannungstensor, Spannungsmatrix Sigma. Und so weiter. Und die nennen wir Tensoren zweiter Stufe. Hier haben wir jetzt sozusagen ein Gebilde, das sowohl Spalten als auch Zeilen enthält. Eine Matrix, wie du sie kennst. Also zwei Dimensionen sozusagen. Und deswegen Tensor zweiter Stufe.
Und jetzt wird hoffentlich auch die Notation klar. Wir verwenden nämlich hier am Kanal insbesondere, aber auch oft in der technischen Mechanik im Allgemeinen eine Notation, die genau die Stufe des Tensors widerspiegelt.
Wir haben: nullte Stufe. Keinen Unterstrich.
Wir haben: erste Stufe. Ein Unterstrich.
Und wir haben: zweite Stufe. Zwei Unterstriche.
Damit ersparen wir uns, dass wir unterschiedlich notieren, ob etwas ein Vektor ist oder eine Matrix mit z.B. diesem Dach-Symbol, wie es oft in der Physik zu finden ist oder irgendetwas Fettdrucken. Wir haben einfach ein Unterstrich Vektor, zwei Unterstriche Matrix und so weiter.
Und dieses und so weiter gibt es in der technischen Mechanik auch, nämlich einen mit vier Unterstrichen. Ein Tensor vierter Stufe. Das ist der bekannte E-Modul Tensor. Der E-Modul Tensor bzw. der E-Modul wird uns dann später noch begegnen, wenn wir über das Hooke’sche Gesetz sprechen. Lineare Elastizität. Du kennst das Ganze vielleicht in der einfachsten Form, nämlich als zwei skalare Werte: E-Modul als Zahlenwert und Querkontraktionszahl nü als zweiten Zahlenwert, um das linear elastische Materialverhalten zu beschreiben. In dieser Notation als Tensor hat der E-Modul Tensor im Allgemeinen 81 Komponenten. Man braucht zwar nie diese 81 Komponenten, weil auch Symmetrien auftreten, aber es gibt im Allgemeinen 81 Einträge in diesem vierstufigen Tensor. Dazu aber später mehr.
Was ist ein Vektor eigentlich?
Nachdem wir jetzt wissen, wie wir einen Vektor aufschreiben, wollen wir uns überlegen, was ein Vektor eigentlich ist. Und ich gehe davon aus, dass die meisten schon Vektoren gesehen haben, wissen, wie man einen Vektor im Grunde hinschreibt, dass er Komponenten hat usw. Wir wollen uns das Ganze aber trotzdem im Detail noch einmal anschauen.
Was ist also ein Vektor? Ein Vektor ist ein Objekt, das eine Wirkungslinie besitzt. Ein Stift beispielsweise hat eine Wirkungslinie. Einen Betrag. Beginn und Ende des Stifts. Und er hat eine Richtung, in die er zeigt. Diese drei Größen definieren unseren Vektor – Stift.
Wenn wir uns das genauer aufzeichnen, dann hätten wir also hier eine Wirkungslinie und auf dieser Wirkungslinie liegt unser Vektor. Wir nennen den Vektor F. Kraftvektor. Der Vektor hat jetzt hier einen Beginn. Und ein Ende. Beginn und Ende nennen wir Schaft und Spitze. Das wird später noch interessant werden, wenn wir ausrechnen, wie ein Vektor eigentlich aussieht. Aus zwei Punkten beispielsweise. Und dann hat der Vektor natürlich die Richtung, nämlich die Richtung, in die er mit seinem Kopf, mit dem Pfeil des Vektors zeigt. Hier in unserem Fall nach rechts oben. Und er hat einen Betrag, nämlich den Abstand zwischen seinem Schaft und seiner Spitze.
Jetzt können wir den Vektor in Komponenten zerlegen. Nämlich beispielsweise in eine horizontale Komponente. In dem wir hier ein Dreieck einzeichnen. Fx. Und in eine vertikale Komponente Fy. Jetzt habe ich hier stillschweigend vorausgesetzt, dass es bereits ein Koordinatensystem gibt, nämlich x in horizontale und y in vertikale Richtung. Auch das zeichnen wir uns hier noch ein. x und y. Und wir bezeichnen dann in der Mechanik oft diese beiden Richtungen als ex und ey. Durch den Einheitsvektor. e bezeichnet den Einheitsvektor. ex Einheitsvektor in x Richtung. Einheitsvektor heißt, der Vektor beschreibt die Richtung und hat die Länge eins.
Wozu ist das gut?
Wir können damit auf unseren Einheitsvektor projizieren, indem wir nämlich sagen Fx ist der Betrag unseres Vektors in x-Richtung multipliziert mit dem Einheitsvektor ex. Und das gleiche natürlich für unsere y Komponente. Und wir können damit, weil es manchmal einfach praktischer ist, Beträge und Richtungen voneinander getrennt hinschreiben.
Betrag eines Vektors in der Ebene (2D)
Wie kommen wir jetzt in diesem Beispiel hier zur Länge? Zum Betrag unseres Vektors F.
Dazu nutzen wir den Satz von Pythagoras. Wir können ja unseren Vektor F darstellen durch diese beiden Komponenten in x und y Richtung.
Wir können diese beiden Komponenten, wenn wir ein bisschen aufpassen, auch hier einfach als Dreieck anlegen. Aufpassen muss man insbesondere bei der Momentenwirkung von Fy hier, dass man sich nicht selbst in die Irre führt. Aber abgesehen davon, für diese Konstruktion dürfen wir das. Wir haben also dann ein rechtwinkliges Dreieck mit dem rechten Winkel hier. Und damit gilt der Satz von Pythagoras, der ja lautet: F Quadrat – Hypotenuse ist gleich Quadrat der einen Kathete plus Quadrat der anderen Kathete. Und daraus lässt sich F ist gleich Wurzel aus Fx Quadrat plus Fy Quadrat anschreiben.
Wenn wir jetzt noch berücksichtigen, dass die Quadrate natürlich zu positiven Ergebnissen führen, dann müssen wir hier auch noch Betrag von F schreiben. Unter Berücksichtigung, dass wir die Einheitsvektoren ex und ey herausziehen dürfen, reicht es uns hier natürlich aus, nur die Längen von Fx und Fy zu quadrieren. Wir können also genauso schreiben. Unser Betrag von F ist die Wurzel aus dem Betrag von Fx zum Quadrat und dem Betrag von Fy zum Quadrat. Nur deren Länge. Die Einheitsvektoren werden ja jeweils eins, wenn man sie quadriert. Das ist in der Ebene der Satz von Pythagoras.
Betrag eines Vektors im Raum (3D)
Das Ganze funktioniert aber auch als Erweiterung auf drei Dimensionen. Wir können uns nämlich ein Koordinatensystem in drei Dimensionen aufzeichnen mit x, y und z, indem hier ein Vektor liegt. Beispielsweise so: F Vektor und das Ganze dann projizieren auf die Achsen. Wir haben hier natürlich eine z-Achse und damit hier hinten Fz. Und wir können in diese Ebene herunter in die x-y-Ebene projizieren und dann weiter auf die einzelnen Achsen und bekommen hier einen Beitrag Fx und einen Beitrag Fy.
Und dann lässt sich Pythagoras auf drei Dimensionen simpel erweitern, indem wir einfach die dritte, nämlich die z-Komponente mit reinnehmen in unsere Wurzel als quadrierten Wert.
Und damit gilt auch hier, dass der Betrag unseres Vektors F die Wurzel sein muss. Fx Quadrat plus Fy Quadrat plus Fz Quadrat. Und gleiches Argument wie zuvor: Die Einheitsvektoren fallen aus dem Quadrat heraus. Sie liefern jeweils nur eins. Wir können also mit den Beträgen arbeiten und dann hier den Betrag von F bestimmen aus der Wurzel Fx Länge Quadrat plus Fy Quadrat plus Fz Quadrat. Jeweils ohne Vektor.
Ausblick auf weitere Beiträge
Das sind die zwei wesentlichen Ergebnisse, wenn es um die Berechnung des Betrags eines Vektors geht. Die sollte man im Hinterkopf behalten und sich noch einmal durchüberlegen, wie das Ganze funktioniert.
Welche anderen Möglichkeiten es jetzt gibt, mit Vektoren zu rechnen, zu addieren, Produkte zu bilden, das ist natürlich für die technische Mechanik genauso wichtig und das werden wir uns im nächsten Video dann genauer anschauen.
Wenn du zu diesem Beitrag hier Fragen hast, dann stelle die Fragen bitte einfach in die Kommentare (hier oder auf YouTube). Ich werde alles so schnell wie möglich beantworten.
Hat euch dieser Inhalt gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen und erzählt gerne euren Freund*innen und Kolleg*innen von meinem Angebot. Vielen Dank!
Das vorletzte der Beispiele die ich hier nachholen möchte ist ein Kreisel. Konkret wollen wir den Kreisel als Drehzahlmesser verwenden und sehen uns an wie wir das zu Stande bringen können. Die Angabe lautet:
Ein Kreisel kann auch als Drehzahlmesser benutzt werden, nämlich folgendermaßen: In einem Rahmen 1 ist ein Gehäuse 2 reibungsfrei drehbar gelagert und mit einer Drehfeder mit diesem verbunden. Ein im Gehäuse 2 gelagerter Kreisel 3 rotiert mit der relativen Winkelgeschwindigkeit ω_R gegen dieses Gehäuse. Wird nun der Rahmen 1 mit einer konstanten Winkelgeschwindigkeit Ω gedreht, so stellt sich nach einem Einschwingvorgang ein konstant bleibender Winkel ϕ ein und Ω kann bestimmt werden.
Geg.: Schwerpunkte liegen im Schnittpunkt der Drehachsen Gehäuse 2: ϕ, Hauptträgheitsmomente I_Gx, I_Gy, I_Gz, lineare Drehfeder mit Konstante c_T, vollkommen entspannt für ϕ = 0 Kreisel 3: ω_R = const., Trägheitsmomente: I_x, I_y = I_z
Ges.: Berechne die konstante Winkelgeschwindigkeit Ω des Rahmens 1 nach dem Einschwingvorgang unter der Annahme, dass ω_R viel größer als Ω ist.
Quelle: Aufgabe 4.4.3 (S. 42) aus P. Lugner et al., Technische Mechanik, 1992 Springer-Verlag, Wien
Auch hier starten wir wieder mit dem Freikörperbild, von dem ihr ja jetzt schon wisst, dass es ein essentieller Bestandteil der technischen Mechanik ist. Nachdem wir uns darüber im Klaren sind wie die Winkelgeschwindigkeiten im gegeben Koordinatensystem wirken, können wir den Drehimpulsvektor anschreiben. Für den Drehimpulssatz benötigen wir die Zeitableitung dieses Drehimpulsvektors, welche hier auf den Kreuzproduktterm (Rotation des Koordinatensystems) beschränkt bleibt, weil wir es mit konstanten Winkelgeschwindigkeiten zu tun haben. Der zweite Term des Drehimpulssatzes ist der Vektor der äußeren Momente. Dabei spielt die gegebene Drehfeder eine Rolle. Nachdem dieser aufgestellt ist, kann der volle Drehimpulssatz angeschrieben und die Vereinfachung für ω_R sehr viel größer als Ω gemacht werden. Zum Abschluss diskutieren wir noch, welche „Drehzahl“ mit einem solchen Gerät typischerweise gemessen wird. Die Rechenschritte im Detail besprechen wir ausführlich im verlinkten YouTube Video. Viel Spaß damit!
Sämtliche Fragen beantworte ich wie immer sehr gerne – schreibt sie mir bitte einfach hier oder auf YouTube als Kommentar.
Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!
Heute sehen wir uns ein Beispiel zum Prinzip von d’Alembert an.
Gegeben ist das nachfolgend dargestellte schwingungsfähige mechanische System, bestehend aus Rollen, Massen und Federn. Die Masse m wird gehalten und zum Zeitpunkt t=0 losgelassen. Zu Beginn sind alle Federn entspannt.
Geg.: m, I, c, k, R, r
Ges.: *Die Winkelkoordinaten φ1, φ2, φ3 als Funktion von x(t) *Sämtliche Beiträge zum Prinzip von d’Alembert *Die Bewegungsgleichung des Systems sowie dessen Eigenkreisfrequenz *Das Bewegungs-Zeit-Gesetz x(t)
Die Angabe gibt es natürlich wieder als Download inkl. Endergebnissen, damit ihr das Beispiel vorab selbst rechnen könnt.
Für die Lösung dieser Aufgabe überlegen wir uns zuerst die Kinematik an den einzelnen Rollen. Dazu nutzen wir zur besseren Veranschaulichung ein Freikörperbilder. Dann sind alle kinematischen Beziehungen aufzustellen. Wir werden feststellen, dass es nur einen Freiheitsgrad im System gibt. Damit können alle kinematischen Größen als Funktion der Variable x(t) ausgedrückt werden und es gibt am Ende auch nur eine Bewegungsgleichung. Um die Bewegungsgleichung zu berechnen nutzen wir das Prinzip von d’Alembert. Dafür ist es wiederum nötig die virtuelle Arbeit von äußeren und inneren Kräften, sowie die virtuelle Arbeit der Trägheitskräfte aufzustellen. Am Ende können wir dann die Bewegungsgleichung lösen und das Bewegungs-Zeit-Gesetz anschreiben. Wie das im Detail funktioniert erkläre ich im untenstehenden YouTube Video.
Wenn ihr Fragen habt schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen schnellstmöglich beantworten.
Hat euch das Video gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!
Viel Spaß beim Rechnen und bis spätestens Donnerstag zum nächsten Beispiel, Markus
Heute wollen wir uns ein Beispiel aus dem Bereich Kreiseldynamik ansehen, und zwar folgende Mühle:
Die dargestellte Mühle wird mit der Winkelgeschwindigkeit Ω=const. angetrieben. Der Mühlstein habe seinen Schwerpunkt in S, seine Masse sei m und seine Massenträgheitsmomente I1 sowie I2=I3.
Ges.: *die erforderliche Winkelgeschwindigkeit ω=const., sodass der Mühlstein im Punkt P mit der Geschwindigkeit -vp e2 gleitet. *die Beschleunigung des Punktes P. *die Winkelgeschwindigkeit des Mühlsteins im e_1-e_2-e_3 Koordinatensystem. *die resultierende Einzelkraft und das resultierende Moment bei Reduktion in den Koordinatenursprung.
Die Angabe gibt es als Download inkl. Lösungen um das Beispiel vorab rechnen zu können.
Um diese Aufgabe zu lösen, bedienen wir uns einer Mischung aus Kinematik, Relativkinematik und natürlich Schwerpunkt- und Drehimpulssatz. Zuerst muss bestimmt werden wie groß für gegebenes vp die Winkelgeschwindigkeit ω wird. Dann können wir uns überlegen welche absolute Beschleunigung der Schwerpunkt des Mühlsteins S aufweist. Aus dieser absoluten Beschleunigung lässt sich dann der Schwerpunktsatz anschreiben und die Kräfte berechnen. Zum Schluss bestimmen wir noch den Drehimpuls für den Mühlstein und berechnen aus diesem die Momente. Wie das im Detail funktioniert erkläre ich im angehängten YouTube Video.
Wenn ihr Fragen habt schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen schnellstmöglich beantworten.
Hat euch das Video gefallen? Dann lasst bitte ein Like auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video zu verpassen. Ihr helft mir damit enorm. Vielen Dank!
Bis nächste Woche mit einem weiteren Beispiel, Markus