Prinzip von d’Alembert: Rollen & Walzen

Herzlich Willkommen!

Es gab schon längere Zeit kein Beispiel zum Prinzip von d’Alembert. Das wollen wir diesmal ändern.

Gegeben sei das skizzierte System aus Rollen und Massen.

Ges.:
*sämtliche Bewegungsgleichungen des Systems.
*die Beschleunigung der Masse 5m.

Die Angabe gibt es natürlich wieder als Download, damit du das Beispiel vorab selbst rechnen kannst.

In diesem Fall ist zwar sehr einfach aufzustellen welche Koordinaten und Zwangsbedingungen notwendig sind, die Rechnung selbst ist aber etwas aufwändiger. Typischerweise lösen wir ein solches Problem, indem wir das Prinzip von d’Alembert allgemein anschreiben und dann die Zwangsbedingungen einsetzen. Nachdem die Dynamik der Masse 5m gesucht ist, sollten wir lediglich darauf achten die Koordinaten dieser Masse in unseren Gleichungen zu behalten. Anschließend lassen sich mittels Koeffizientenvergleich und auflösen des entstehenden Gleichungssystems direkt die Beschleunigungen der Massen – insbesondere der Masse 5m – bestimmen. Das und noch einige zusätzliche Erklärungen und Nebenbemerkungen findest du im verlinkten YouTube Video. Viel Spaß damit!

Auch die Musterlösung stelle ich, wie gewohnt, als pdf zum Download zur Verfügung.

Wenn ihr Fragen habt schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen schnellstmöglich beantworten.

Hat euch das Video gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Alles Gute und bis bald,
Markus

Kreisel: Kollermühle

Herzlich Willkommen!

Wir fügen wieder einmal ein Kreiselbeispiel zu unserem Repertoire hinzu. Diesmal geht es um eine der klassischsten Anwendung der Kreiseldynamik, nämlich eine Kollermühle. Wie ihr wahrscheinlich wisst, wird dieses Gerät in der Zerkleinerungstechnik (z.B. um Mehl zu mahlen) verwendet. Warum das überhaupt funktioniert, sollte das heutige Beispiel sehr anschaulich zeigen.

Eine Kollermühle besteht aus einer drehbar gelagerten, dünnen Kreisscheibe (Masse m, Radius ρ0), die über einen masselosen Stab der Länge l=2ρ0 aus der Ruhelage mit konstanter Winkelbeschleunigung α beschleunigt wird, wobei gilt ω0(t)=αt.

Bestimme für reines Rollen zwischen Scheibe und Unterlage:
*das erforderliche äußere Moment M im mit der Scheibe mitrotierenden körperfesten Koordinatensystem e–1-e–2-e–3.
*die Zeit t1, bei der die Anpresskraft zwischen Scheibe und Unterlage FN=2mg beträgt.
*den erforderlichen minimalen Reibungskoeffizienten μ zwischen Scheibe und Unterlage, sodass während des gesamten Beschleunigungsvorganges reines Rollen sichergestellt ist.

Die Angabe zum Download gibt es wie gewohnt hier:

Wir können hier laut Angabe davon ausgehen, dass die Stange masselos ist, weil sie als sehr leicht im Vergleich zur Kreisscheibe angenommen wird. Daher reicht es aus, die relevanten Gleichungen für die Scheibe – allerdings im gegebenen e1-e2-e3-Koordinatensystem – anzuschreiben. Wir benötigen also den Drehimpulssatz der Scheibe. Damit wir diesen aufstellen können, brauchen wir wiederum die Winkelgeschwindigkeit und den Trägheitstensor der Kreisscheibe. Aus dem fertigen Drehimpulssatz lässt sich schließlich sowohl die gesuchte Zeit t1, als auch der minimal notwendige Reibungskoeffizient zwischen Scheibe und Unterlage bestimmen, sodass wir jederzeit reines Rollen haben. Wie immer findest du alle Details im verlinkten Video.

Für diejenigen unter euch die lieber lesen als ein Video anzuschauen gibt es das pdf der fertigen Rechnung hier zum Download.

Bei Fragen meldet euch sehr gerne jederzeit bei mir. Ich versuche alles schnellstmöglich zu beantworten.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald,
Markus

Kreisel: Rotor in rotierender Gabel

Herzlich Willkommen!

Kreiseldynamik ist derzeit noch eine recht unterrepräsentierte Spezies hier auf der Website. Dies soll sich im Laufe der Zeit ändern, daher gibt es heute wieder einmal ein Kreiselbeispiel mit folgender Angabe.

In einer Gabel, die mit der konstanten Winkelgeschwindigkeit Ω rotiert, ist ein Rotor gelagert, der sich seinerseits mit der konstanten Winkelgeschwindigkeit ωr relativ zur Gabel dreht. Der Rotor besitzt die Hauptträgheitsmomente: Ix = Iy = Iz = I und das Gewicht G. Für die Gabel sind die Abmessungen l1, l2 und l gegeben.

Errechne im gabelfesten xyz−System:
*den Drehimpuls des Rotors bezüglich S.
*die Auflagerkräfte in C und D.
*die Auflagerkräfte in A und B zufolge des Rotors.

Quelle: Aufgabe 4.4.1 (S. 41) aus P. Lugner et al., Technische Mechanik, 1992 Springer-Verlag, Wien

Die Angabe zum Download gibt es wie gewohnt hier:

Es handelt sich in diesem Fall um ein relativ simples Kreiselbeispiel. Nachdem die Rotationen von Rotor und Gabel normal zueinander stehen ergibt sich ein kompakter Drehimpulsvektor, der wiederum zu einem sehr kompakten Drehimpulssatz führt. Anschließend benötigen wir noch den Schwerpunktsatz als zweite Gleichung, der allerdings auch zum Kräftegleichgewicht wird, weil es keine Schwerpunktsbewegung gibt. Damit lassen sich schon alle vier Lagerreaktionen berechnen. Die Schritt-für-Schritt Erklärung findet ihr im Video. Viel Spaß damit.

Für diejenigen unter euch die wieder lieber lesen als ein Video zu schauen gibt es das pdf der fertigen Rechnung.

Sämtliche Fragen beantworte ich wie immer sehr gerne – schreibt sie mir bitte einfach hier oder auf YouTube als Kommentar.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald,
Markus

Kreisel: Rotierender Stab mit Drehfeder

Herzlich Willkommen!

Das letzte Beispiel zur Kreiseldynamik ist schon eine ganze Weile her, deshalb wollen wir uns heute wieder einmal ein solches ansehen.

Ein zylindrischer, homogener Stab (kein dünner Stab) ist in einer rotierenden Gabel reibungsfrei drehbar gelagert und über eine Drehfeder mit dieser verbunden.

Geg.:
homogener Stab: Länge l, Durchmesser 2r, Masse m
lineare Drehfeder: Drehfederkonstante cT, vollkommen entspannt bei ϕ=0
Gabel: Winkelgeschwindigkeit Ω, die durch ein entsprechendes Antriebsmoment MA konstant gehalten wird.

Ges.:
*Wie groß darf Ω höchstens sein, damit der Stab für kleine Winkel ϕ eine Schwingung ausführt?
*Welchen Wert muss das Antriebsmoment MA(ϕ) bei reibungsfreier Lagerung der Gabel annehmen. Anfangsbedingung: ϕ=0, ϕ˙=ν

Hinweis: Verwenden Sie die Euler’schen Kreiselgleichungen.

Quelle: Aufgabe 4.4.4 (S. 42) aus P. Lugner et al., Technische Mechanik, 1992 Springer-Verlag, Wien

Die Angabe zum Download gibt es wie gewohnt ihr hier:

Wie immer ist es wichtig sich anhand einer Skizze, d.h. eines Freikörperbilds bewusst zu machen, welche Kräfte und Momente sowie Geschwindigkeiten und Beschleunigungen im System wirken. Dann können wir hier auch schon die Euler’schen Kreiselgleichungen anschreiben, deren einzelne Terme bestimmen und in die allgemeine Form der Gleichungen einsetzen. Dadurch gelangen wir zu einem Gleichungssystem aus dem wir eine Bewegungsgleichung erhalten. Am Ende müssen wir uns noch darüber Gedanken machen, wann es sich bei dieser Bewegungsgleichung um eine Schwingungsgleichung handelt. All das besprechen wir wieder in voller Schönheit im verlinkten Video.

Sämtliche Fragen beantworte ich wie immer sehr gerne – schreibt sie mir bitte einfach hier oder auf YouTube als Kommentar.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald,
Markus

Prinzip von d’Alembert: Brett auf Walzen

Herzlich Willkommen!

Heute sehen wir uns wieder einmal ein Beispiel zum Prinzip von d’Alembert an.

Eine Platte der Masse M ruht auf zwei Walzen, die jeweils die Masse m und den Radius r besitzen. Die linke Walze ist als Vollzylinder, die rechte als dünnwandiger Hohlzylinder ausgeführt.

Ges.:
*Bestimme die Beschleunigung der Platte unter der Annahme, dass kein Gleiten auftritt, mit Hilfe des Prinzips von d’Alembert.

Die Angabe gibt es natürlich wieder als Download inkl. Endergebnissen, damit ihr das Beispiel vorab selbst rechnen könnt.

Diese rechnerisch eher kurze Aufgabe eignet sich sehr gut dazu das Prinzip von d’Alembert genauer zu erklären. Wir diskutieren also welche Beiträge es gibt und woher diese kommen. Außerdem klären wir was es mit den d’Alembert’schen Trägheitstermen und Trägheitskräften auf sich hat. Im Zuge dessen rechnen wir selbstverständlich auch die gefragte Beschleunigung des Brettes aus. Das und noch einiges mehr gibt es wieder im verlinkten YouTube Video zu sehen. Viel Spaß damit!

Wenn ihr Fragen habt schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen schnellstmöglich beantworten.

Hat euch das Video gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Alles Gute und bis bald,
Markus

Kreiseldynamik einer Mischmaschine – Lagerbelastung berechnen

Herzlich Willkommen!

Wir widmen uns wieder einem Kreiselbeispiel. Darin wollen wir heute die Lager einer idealisierten Mischmaschine dynamisch auslegen. Folgendes ist gegeben:

Ein Rotor sei in einem rotierenden Rahmen gelagert. Die Masse des Rotors ist m, seine Massenträgheitsmomente Ix sowie Iy = Iz und seine Winkelgeschwindigkeit relativ zum Rahmen ωR. Für den Rahmen sind die Abmessungen l, der Winkel α sowie seine Winkelgeschwindigkeit Ω und Winkelbeschleunigung Ω˙ gegeben. Alle Lager sind als reibungsfrei anzunehmen.

Ges.:
*Die Bestimmungsgleichungen für die Kräfte auf den Rotor in A und B dargestellt im rahmenfesten x-y-z-System.
*Die relative Winkelbeschleunigung ω˙R des Rotors.

Quelle: Aufgabe 4.4.2 (S. 41) aus P. Lugner et al., Technische Mechanik, 1992 Springer-Verlag, Wien

Die Angabe zum Download findet ihr wie immer hier:

Wie meistens, starten wir mit einem Freikörperbild. Nachdem wir uns darüber im Klaren sind wie die Winkelgeschwindigkeiten im gegeben Koordinatensystem wirken, können wir den Drehimpulsvektor anschreiben. Für den Drehimpulssatz benötigen wir die Zeitableitung dieses Drehimpulsvektors. Diesmal haben wir auch eine nicht verschwindende partielle Zeitableitung. Der zweite Term des Drehimpulssatzes ist der Vektor der äußeren Momente. Die Momente entstehen aus den Lagerkräften und ermöglichen uns damit die Bestimmung eben dieser Lagerkräfte. Am Ende bestimmen wir noch ω_R und stellen fest, dass dessen x-Komponente konstant sein muss. Die Rechenschritte im Detail besprechen wir ausführlich im verlinkten YouTube Video. Viel Spaß damit!

Sämtliche Fragen beantworte ich wie immer sehr gerne – schreibt sie mir bitte einfach hier oder auf YouTube als Kommentar.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald,
Markus

Kreisel als Drehzahlmesser verwenden

Herzlich Willkommen!

Das vorletzte der Beispiele die ich hier nachholen möchte ist ein Kreisel. Konkret wollen wir den Kreisel als Drehzahlmesser verwenden und sehen uns an wie wir das zu Stande bringen können. Die Angabe lautet:

Ein Kreisel kann auch als Drehzahlmesser benutzt werden, nämlich folgendermaßen: In einem Rahmen 1 ist ein Gehäuse 2 reibungsfrei drehbar gelagert und mit einer Drehfeder mit diesem verbunden. Ein im Gehäuse 2 gelagerter Kreisel 3 rotiert mit der relativen Winkelgeschwindigkeit ω_R gegen dieses Gehäuse. Wird nun der Rahmen 1 mit einer konstanten Winkelgeschwindigkeit Ω gedreht, so stellt sich nach einem Einschwingvorgang ein konstant bleibender Winkel ϕ ein und Ω kann bestimmt werden.

Geg.:
Schwerpunkte liegen im Schnittpunkt der Drehachsen
Gehäuse 2: ϕ, Hauptträgheitsmomente I_Gx, I_Gy, I_Gz,
lineare Drehfeder mit Konstante c_T, vollkommen entspannt für ϕ = 0
Kreisel 3: ω_R = const., Trägheitsmomente: I_x, I_y = I_z

Ges.:
Berechne die konstante Winkelgeschwindigkeit Ω des Rahmens 1 nach dem Einschwingvorgang unter der Annahme, dass ω_R viel größer als Ω ist.

Quelle: Aufgabe 4.4.3 (S. 42) aus P. Lugner et al., Technische Mechanik, 1992 Springer-Verlag, Wien

Die Angabe zum Download findet ihr hier:

Auch hier starten wir wieder mit dem Freikörperbild, von dem ihr ja jetzt schon wisst, dass es ein essentieller Bestandteil der technischen Mechanik ist. Nachdem wir uns darüber im Klaren sind wie die Winkelgeschwindigkeiten im gegeben Koordinatensystem wirken, können wir den Drehimpulsvektor anschreiben. Für den Drehimpulssatz benötigen wir die Zeitableitung dieses Drehimpulsvektors, welche hier auf den Kreuzproduktterm (Rotation des Koordinatensystems) beschränkt bleibt, weil wir es mit konstanten Winkelgeschwindigkeiten zu tun haben. Der zweite Term des Drehimpulssatzes ist der Vektor der äußeren Momente. Dabei spielt die gegebene Drehfeder eine Rolle. Nachdem dieser aufgestellt ist, kann der volle Drehimpulssatz angeschrieben und die Vereinfachung für ω_R sehr viel größer als Ω gemacht werden. Zum Abschluss diskutieren wir noch, welche „Drehzahl“ mit einem solchen Gerät typischerweise gemessen wird. Die Rechenschritte im Detail besprechen wir ausführlich im verlinkten YouTube Video. Viel Spaß damit!

Sämtliche Fragen beantworte ich wie immer sehr gerne – schreibt sie mir bitte einfach hier oder auf YouTube als Kommentar.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald,
Markus

Prinzip von d’Alembert: Rollensystem mit Federn

Herzlich Willkommen!

Heute sehen wir uns ein Beispiel zum Prinzip von d’Alembert an.

Gegeben ist das nachfolgend dargestellte schwingungsfähige mechanische System, bestehend aus Rollen, Massen und Federn. Die Masse m wird gehalten und zum Zeitpunkt t=0 losgelassen. Zu Beginn sind alle Federn entspannt.

Geg.:
m, I, c, k, R, r

Ges.:
*Die Winkelkoordinaten φ1, φ2, φ3 als Funktion von x(t)
*Sämtliche Beiträge zum Prinzip von d’Alembert
*Die Bewegungsgleichung des Systems sowie dessen Eigenkreisfrequenz
*Das Bewegungs-Zeit-Gesetz x(t)

Die Angabe gibt es natürlich wieder als Download inkl. Endergebnissen, damit ihr das Beispiel vorab selbst rechnen könnt.

Für die Lösung dieser Aufgabe überlegen wir uns zuerst die Kinematik an den einzelnen Rollen. Dazu nutzen wir zur besseren Veranschaulichung ein Freikörperbilder. Dann sind alle kinematischen Beziehungen aufzustellen. Wir werden feststellen, dass es nur einen Freiheitsgrad im System gibt. Damit können alle kinematischen Größen als Funktion der Variable x(t) ausgedrückt werden und es gibt am Ende auch nur eine Bewegungsgleichung. Um die Bewegungsgleichung zu berechnen nutzen wir das Prinzip von d’Alembert. Dafür ist es wiederum nötig die virtuelle Arbeit von äußeren und inneren Kräften, sowie die virtuelle Arbeit der Trägheitskräfte aufzustellen. Am Ende können wir dann die Bewegungsgleichung lösen und das Bewegungs-Zeit-Gesetz anschreiben. Wie das im Detail funktioniert erkläre ich im untenstehenden YouTube Video.

Wenn ihr Fragen habt schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen schnellstmöglich beantworten.

Hat euch das Video gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Viel Spaß beim Rechnen und bis spätestens Donnerstag zum nächsten Beispiel,
Markus

Kreiseldynamik: Mühlstein

Herzlich Willkommen!

Heute wollen wir uns ein Beispiel aus dem Bereich Kreiseldynamik ansehen, und zwar folgende Mühle:

Die dargestellte Mühle wird mit der Winkelgeschwindigkeit Ω=const. angetrieben. Der Mühlstein habe seinen Schwerpunkt in S, seine Masse sei m und seine Massenträgheitsmomente I1 sowie I2=I3.

Ges.:
*die erforderliche Winkelgeschwindigkeit ω=const., sodass der Mühlstein im Punkt P mit der Geschwindigkeit -vp e2 gleitet.
*die Beschleunigung des Punktes P.
*die Winkelgeschwindigkeit des Mühlsteins im e_1-e_2-e_3 Koordinatensystem.
*die resultierende Einzelkraft und das resultierende Moment bei Reduktion in den Koordinatenursprung.

Die Angabe gibt es als Download inkl. Lösungen um das Beispiel vorab rechnen zu können.

Um diese Aufgabe zu lösen, bedienen wir uns einer Mischung aus Kinematik, Relativkinematik und natürlich Schwerpunkt- und Drehimpulssatz. Zuerst muss bestimmt werden wie groß für gegebenes vp die Winkelgeschwindigkeit ω wird. Dann können wir uns überlegen welche absolute Beschleunigung der Schwerpunkt des Mühlsteins S aufweist. Aus dieser absoluten Beschleunigung lässt sich dann der Schwerpunktsatz anschreiben und die Kräfte berechnen. Zum Schluss bestimmen wir noch den Drehimpuls für den Mühlstein und berechnen aus diesem die Momente. Wie das im Detail funktioniert erkläre ich im angehängten YouTube Video.

Wenn ihr Fragen habt schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen schnellstmöglich beantworten.

Hat euch das Video gefallen? Dann lasst bitte ein Like auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video zu verpassen. Ihr helft mir damit enorm. Vielen Dank!

Bis nächste Woche mit einem weiteren Beispiel,
Markus