Prinzip von d’Alembert: Rollen & Walzen

Herzlich Willkommen!

Es gab schon längere Zeit kein Beispiel zum Prinzip von d’Alembert. Das wollen wir diesmal ändern.

Gegeben sei das skizzierte System aus Rollen und Massen.

Ges.:
*sämtliche Bewegungsgleichungen des Systems.
*die Beschleunigung der Masse 5m.

Die Angabe gibt es natürlich wieder als Download, damit du das Beispiel vorab selbst rechnen kannst.

In diesem Fall ist zwar sehr einfach aufzustellen welche Koordinaten und Zwangsbedingungen notwendig sind, die Rechnung selbst ist aber etwas aufwändiger. Typischerweise lösen wir ein solches Problem, indem wir das Prinzip von d’Alembert allgemein anschreiben und dann die Zwangsbedingungen einsetzen. Nachdem die Dynamik der Masse 5m gesucht ist, sollten wir lediglich darauf achten die Koordinaten dieser Masse in unseren Gleichungen zu behalten. Anschließend lassen sich mittels Koeffizientenvergleich und auflösen des entstehenden Gleichungssystems direkt die Beschleunigungen der Massen – insbesondere der Masse 5m – bestimmen. Das und noch einige zusätzliche Erklärungen und Nebenbemerkungen findest du im verlinkten YouTube Video. Viel Spaß damit!

Auch die Musterlösung stelle ich, wie gewohnt, als pdf zum Download zur Verfügung.

Wenn ihr Fragen habt schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen schnellstmöglich beantworten.

Hat euch das Video gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Alles Gute und bis bald,
Markus

Lagrange: Mathematisches Tripelpendel

Herzlich Willkommen!

Das Tripelpendel ist die logische Fortführung des oft in der Lagrangemechanik behandelten Doppelpendels. Wir wollen dieses daher auch hier besprechen.

Gegeben ist ein mathematisches Tripelpendel laut Skizze.

Bestimme für dieses System:
*die Lagrangefunktion
*die Bewegungsgleichungen in allen generalisierten Koordinaten.

Die Angabe gibt es hier als Download. Versuche idealerweise das Beispiel zuerst selbst zu lösen und greife erst dann auf meine Musterlösung zurück.

Wir können hier ganz klassisch vorgehen und zu Beginn die Koordinaten und Geschwindigkeiten der Massepunkte bestimmen. Anschließend bietet es sich an die Geschwindigkeitsquadrate separat zu berechnen um diese dann direkt für die kinetische Energie zur Verfügung zu haben. Die Quadrate sind doch etwas längere Formen und auf diese Weise machen wir weniger leicht einen Fehler. Damit lassen sich dann sowohl kinetische und potentielle Energie sowie die Lagrangefunktion aufstellen. Schließlich müssen „nur noch“ die Bewegungsgleichungen mittels Euler-Lagrange-Gleichungen berechnen. Das ist hier ebenfalls eine etwas längere Rechnung, weshalb ich die vollständige Rechnung nur für eine generalisierte Koordinate durchführe. Berechne gerne selbst die anderen Bewegungsgleichungen selbständig und melde dich bei mir, wenn es zu Problemen kommt. Das Endergebnis stelle ich natürlich zur Verfügung. Schritt für Schritt gehen wir die Lösung dieses Beispiels im verlinkten Video durch. Viel Spaß und zahlreiche Erkenntnisse damit.

Wenn du nicht so gerne Videos ansiehst, kannst du dir hier auch die vollständige Lösung als pdf herunterladen. Die zahlreichen Erklärungen zwischen den Zeilen gehen so allerdings leider verloren. Aus diesem Grunde empfehle ich persönlich das Video. Der Download kann aber natürlich als zusätzliche Referenz dienen.

Unterstütze bitte meine Arbeit durch ein Like und eine Weiterempfehlung der Website und des YouTube Kanals. Falls du es noch nicht getan hast, verhilfst du mir außerdem mit einem Abo zu mehr Sichtbarkeit bei den YouTube-Göttern. 😉 Vielen Dank dafür!

Bis zum nächsten Beitrag,
Markus

Kreisel: Kollermühle

Herzlich Willkommen!

Wir fügen wieder einmal ein Kreiselbeispiel zu unserem Repertoire hinzu. Diesmal geht es um eine der klassischsten Anwendung der Kreiseldynamik, nämlich eine Kollermühle. Wie ihr wahrscheinlich wisst, wird dieses Gerät in der Zerkleinerungstechnik (z.B. um Mehl zu mahlen) verwendet. Warum das überhaupt funktioniert, sollte das heutige Beispiel sehr anschaulich zeigen.

Eine Kollermühle besteht aus einer drehbar gelagerten, dünnen Kreisscheibe (Masse m, Radius ρ0), die über einen masselosen Stab der Länge l=2ρ0 aus der Ruhelage mit konstanter Winkelbeschleunigung α beschleunigt wird, wobei gilt ω0(t)=αt.

Bestimme für reines Rollen zwischen Scheibe und Unterlage:
*das erforderliche äußere Moment M im mit der Scheibe mitrotierenden körperfesten Koordinatensystem e–1-e–2-e–3.
*die Zeit t1, bei der die Anpresskraft zwischen Scheibe und Unterlage FN=2mg beträgt.
*den erforderlichen minimalen Reibungskoeffizienten μ zwischen Scheibe und Unterlage, sodass während des gesamten Beschleunigungsvorganges reines Rollen sichergestellt ist.

Die Angabe zum Download gibt es wie gewohnt hier:

Wir können hier laut Angabe davon ausgehen, dass die Stange masselos ist, weil sie als sehr leicht im Vergleich zur Kreisscheibe angenommen wird. Daher reicht es aus, die relevanten Gleichungen für die Scheibe – allerdings im gegebenen e1-e2-e3-Koordinatensystem – anzuschreiben. Wir benötigen also den Drehimpulssatz der Scheibe. Damit wir diesen aufstellen können, brauchen wir wiederum die Winkelgeschwindigkeit und den Trägheitstensor der Kreisscheibe. Aus dem fertigen Drehimpulssatz lässt sich schließlich sowohl die gesuchte Zeit t1, als auch der minimal notwendige Reibungskoeffizient zwischen Scheibe und Unterlage bestimmen, sodass wir jederzeit reines Rollen haben. Wie immer findest du alle Details im verlinkten Video.

Für diejenigen unter euch die lieber lesen als ein Video anzuschauen gibt es das pdf der fertigen Rechnung hier zum Download.

Bei Fragen meldet euch sehr gerne jederzeit bei mir. Ich versuche alles schnellstmöglich zu beantworten.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald,
Markus

Kreisel: Rotor in rotierender Gabel

Herzlich Willkommen!

Kreiseldynamik ist derzeit noch eine recht unterrepräsentierte Spezies hier auf der Website. Dies soll sich im Laufe der Zeit ändern, daher gibt es heute wieder einmal ein Kreiselbeispiel mit folgender Angabe.

In einer Gabel, die mit der konstanten Winkelgeschwindigkeit Ω rotiert, ist ein Rotor gelagert, der sich seinerseits mit der konstanten Winkelgeschwindigkeit ωr relativ zur Gabel dreht. Der Rotor besitzt die Hauptträgheitsmomente: Ix = Iy = Iz = I und das Gewicht G. Für die Gabel sind die Abmessungen l1, l2 und l gegeben.

Errechne im gabelfesten xyz−System:
*den Drehimpuls des Rotors bezüglich S.
*die Auflagerkräfte in C und D.
*die Auflagerkräfte in A und B zufolge des Rotors.

Quelle: Aufgabe 4.4.1 (S. 41) aus P. Lugner et al., Technische Mechanik, 1992 Springer-Verlag, Wien

Die Angabe zum Download gibt es wie gewohnt hier:

Es handelt sich in diesem Fall um ein relativ simples Kreiselbeispiel. Nachdem die Rotationen von Rotor und Gabel normal zueinander stehen ergibt sich ein kompakter Drehimpulsvektor, der wiederum zu einem sehr kompakten Drehimpulssatz führt. Anschließend benötigen wir noch den Schwerpunktsatz als zweite Gleichung, der allerdings auch zum Kräftegleichgewicht wird, weil es keine Schwerpunktsbewegung gibt. Damit lassen sich schon alle vier Lagerreaktionen berechnen. Die Schritt-für-Schritt Erklärung findet ihr im Video. Viel Spaß damit.

Für diejenigen unter euch die wieder lieber lesen als ein Video zu schauen gibt es das pdf der fertigen Rechnung.

Sämtliche Fragen beantworte ich wie immer sehr gerne – schreibt sie mir bitte einfach hier oder auf YouTube als Kommentar.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald,
Markus

Energiesatz: Halbzylinderschale rollt auf Unterlage

Herzlich Willkommen!

Es geht wieder einmal um den Arbeits- und Energiesatz. Wie schon bei vorhergehenden Beispielen zur Thematik eigentlich nur um den Energiesatz, denn das System ist konservativ, wie die Angabe vermuten lässt.

Eine dünne Halbzylinderschale der Masse m rollt ohne zu rutschen auf einer Ebene. Die Schale wird dabei aus der dargestellten Lage aus der Ruhe losgelassen.

Bestimme mittels Energiesatz:
*die Winkelgeschwindigkeit φ˙(φ) in Abhängigkeit der Lage φ
*den Winkel φ bei dem die Winkelgeschwindigkeit ihr Maximum erreicht.

Die Angabe als Download gibt es hier. Probiere vielleicht zuerst die Lösung selbst zu finden und schaue dir dann erst meine Musterlösung an. Das hilft in der Regel enorm beim Verständnis.

Wir haben in diesem Fall jeweils die Energien zum Startzeitpunkt sowie für eine beliebige Winkellage aufzustellen. Dafür benötigen wir zuvor die Winkelgeschwindigkeit der Halbzylinderschale (über das analytische Prinzip einfach errechenbar) sowie auch die Lage des Schwerpunkts. Außerdem wird es am einfachsten sein die kinetische Energie der Rotation zu verwenden, also brauchen wir auch noch das Massenträgheitsmoment der Schale. Ist das alles bestimmt lassen sich die Energieterme einfach hinschreiben und über Energieerhaltung miteinander verknüpfen. Damit erhalten wir direkt einen Ausdruck für die Winkelgeschwindigkeit als Funktion des Winkels selbst. Im Detail sprechen wir wieder im Video über die Lösung. Viel Spaß beim Anschauen!


Es gibt natürlich auch wieder die Musterlösung als pdf – lade es gerne herunter.

Solltest du fragen haben bitte schreibe gerne hier oder auf YouTube einen Kommentar. Mich interessiert natürlich auch was du generell zu diesem Beispiel und meiner Musterlösung sagst. Gerne jederzeit melden.

Wenn dir die Website und mein YouTube Kanal weiterhelfen, dann lass mir auch gerne ein Abo da und gib die Links an deine Studienkolleg*innen weiter.

Alles Gute, viel Spaß und bis bald,
Markus

Lagrange: Kreisscheibe mit Unwucht an Feder

Herzlich Willkommen!

Im vorliegenden Beispiel zum Thema Schwingungen, wollen wir mit der Methode von Lagrange eine Rolle (Kreisscheibe) mit einer Unwucht betrachten. Die Rolle hängt zusätzlich an einer Feder und das System führt damit eine Schwingung aus.

Eine in der skizzierten Weise federnd aufgehängte, homogene Kreisscheibe mit Masse M und Radius r rollt auf einer waagrechten Unterlage ohne zu gleiten. Am Umfang der Scheibe befindet sich eine als Punktmasse anzusehende Unwucht der Masse m. Für x=0 ist die Feder mit Federkonstante c vollkommen entspannt und die Unwucht befindet sich senkrecht unter dem Scheibenschwerpunkt.

Bestimme für dieses System:
*die generalisierte Koordinate und Geschwindigkeit.
*die kinetische Energie T und die potentielle Energie V des Systems sowie dessen Lagrange Funktion.
*die Bewegungsgleichung mit Hilfe der Euler-Lagrange Gleichung.
*die vereinfachte Bewegungsgleichung für kleine Auslenkungen x, also x/r und x/a sehr klein

Die Angabe gibt es hier als Download. Versuche gerne das Beispiel zuerst selbst zu lösen, damit lässt sich üblicherweise am meisten lernen.

Das Beispiele lässt sich ganz klassisch nach dem Schema von Lagrange lösen. Wir wählen als generalisierte Koordinate die x-Auslenkung der Kreisscheibe, welche wir mit dem Rollwinkel/Ausslenkungswinkel der Unwucht in Verbindung bringen können. Dann stellen wir Koordinaten, Geschwindigkeiten sowie kinetische und potentielle Energie auf. Einzig bei der zeitlich veränderlichen Federlänge müssen wir ein wenig Geometrie ins Spiel bringen und diese Länge entsprechend durch x und die Abmessung a ausdrücken. Danach lässt sich die Lagrangefunktion anschreiben und die Bewegungsgleichung (es gibt hier ausnahmsweise nur eine) mittels Euler-Lagrange-Gleichung ableiten. Zum Schluss sehen wir uns noch eine linearisierte Form der Bewegungsgleichung an. Wie gewohnt besprechen wir die Details zur Lösung dieses Problems im verlinkten Video. Viel Spaß und zahlreiche Erkenntnisse damit.

Wer nicht so gerne Videos ansieht, kann auch hier die vollständige Lösung als pdf herunterladen. Die zahlreichen Erklärungen zwischen den Zeilen gehen so allerdings leider verloren. Aus diesem Grunde empfehle ich persönlich das Video. Der Download kann aber natürlich als zusätzliche Referenz dienen.

Unterstütze bitte meine Arbeit durch ein Like und eine Weiterempfehlung der Website und des YouTube Kanals. Falls du es noch nicht getan hast, verhilfst du mir außerdem mit einem Abo zu mehr Sichtbarkeit. Vielen Dank dafür!

Bis zum nächsten Beitrag,
Markus

Lagrange: Mittels Seil verbundene Zylinder im Schwerefeld

Herzlich Willkommen!

Auch wenn die Methode von Lagrange meist ohne Kräfte auskommt, lassen sich dennoch bei Bedarf auch Kräfte damit berechnen. Wie das funktionieren kann sehen wir uns in diesem Beitrag an.

Zwei homogene Zylinder mit Massen m1, m2 und Radien r1, r2 sind mit einem Faden umwickelt. Die Achse des Zylinders 1 ist reibungsfrei gelagert. Der Zylinder 2 fällt im Schwerefeld senkrecht nach unten. Beide Zylinder rollen ohne zu rutschen und spulen dabei Faden ab.

Stelle die Bewegungsgleichungen auf und berechne die Fadenkraft.

Die Angabe gibt es hier als Download. Versuche gerne das Beispiel zuerst selbst zu lösen, damit lässt sich üblicherweise am meisten lernen.

In diesem Beispiel stellen wir fest, dass sich durch reines Abrollen der Zylinder am Seil, eine Zwangsbedingung zwischen den Drehwinkeln und der x-Achse aufstellen lässt. Damit können wir ein der drei Variablen eliminieren und beispielsweise die beiden Winkel als generalisierte Koordinaten verwenden. Anschließend stellen wir wieder kinetische und potentielle Energie auf und schreiben mit deren Hilfe die Lagrangefunktion an. Es ergeben sich zwei Bewegungsgleichungen, eine für jeden Winkel, die wir dann ineinander einsetzen und damit zwei geschlossene Gleichungen für die Beschleunigungen finden können. Anschließend lässt sich mit wenigen Zusatzüberlegungen (Drallsatz), die Seilkraft aus den Winkelbeschleunigungen bestimmen. Wie gewohnt besprechen wir die Details zur Lösung dieses Problems im verlinkten Video.

Wer lesen bevorzugt, findet hier auch wieder die vollständige Lösung als pdf, allerdings dann ohne die üblichen Erklärungen zwischen den Zeilen. Diese findet ihr nur im Video.

Unterstütze bitte meine Arbeit durch ein Like und eine Weiterempfehlung der Website und des YouTube Kanals. Falls du es noch nicht getan hast, verhilfst du mir außerdem mit einem Abo zu mehr Sichtbarkeit. Vielen Dank dafür!

Bis zum nächsten Beitrag,
Markus

Energiesatz: Rollendes Rad an Feder (Schwingung)

Herzlich Willkommen!

Es geht wieder einmal um den Arbeits- und Energiesatz. Wie schon beim letzten Beispiel zu diesem Thema eigentlich nur um den Energiesatz, denn das System ist konservativ, wie die folgende Angabe zeigt.

Ein Rad mit der Masse m und dem Trägheitsradius is rollt ohne zu gleiten. Im entspannten Zustand hat die Feder die Länge l0 und die Federkonstante c. In der skizzierten Position wird das Rad aus der Ruhe freigegeben.
Geg.: m = 60 kg, is = 0.6 m, r = 1 m, l = 3 m, l0 = 0.5 m, c = 10 N/m, β = 60°

Ges.:
*der allgemeine Ausdruck für die Winkelgeschwindigkeit ω des Rades, nachdem es sich um den Winkel β im Uhrzeigersinn verdreht hat.
*der Zahlenwert für diese Winkelgeschwindigkeit ω.

Die Angabe gibt es natürlich wie gewohnt hier als Download.

Die Lösung dieses Beispiels ist an sich recht kurz, erfordert aber einige Überlegungen zur Geometrie. So müssen wir uns insbesondere Gedanken darüber machen wie sich die Federlänge in Abhängigkeit von der Rollbewegung des Rades ändert. Wenn das erledigt ist und wir uns für eine Betrachtung am Momentanpol des Rades entscheiden, ist alles weitere schnell aufgeschrieben. Es gibt in diesem Fall nur eine kinetische Energie der Rotation und die potentiellen Energien der Feder zu Beginn und am Ende. Damit lässt sich leicht die Winkelgeschwindigkeit des Rades als Funktion des Drehwinkels bestimmen. Die Details dazu findest du wie gehabt im verlinkten Video.


Ich beginne ab diesem Beispiel auch damit pdf-Dateien des Lösungsweges bereitzustellen. Falls das für dich interessant ist, hinterlasse mir gerne einen Kommentar, dann kann ich gerne auch bei schon besprochenen Beispielen solche pdfs nachreichen.

Sollten Fragen auftauchen oder ihr Anmerkungen haben, dann zögert bitte nicht mir hier oder auf YouTube einen Kommentar zu hinterlassen. Ich freue mich immer auf eure Rückmeldungen und beantworte sämtlichen Fragen schnell und gerne.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte unbedingt auch ein Like auf YouTube da und abonniert diesen Blog. Außerdem freue ich mich über ein Abo meines YouTube Kanals! Ihr helft mir damit enorm. Vielen Dank!

Viel Spaß mit dem Beispiel und bis bald,
Markus

Lagrange: Dynamik eines hochgeworfenen Seils

Herzlich Willkommen!

Ein sehr interessantes – und oft in der analytischen Mechanik anzutreffendes – Beispiel ist jenes, das wir uns in diesem Beitrag genauer ansehen wollen.

Ein Seil der Länge l wird senkrecht in die Luft geworfen. Es sei voll beweglich, sodass der Knick frei über das Seil laufen kann. Die Seilmasse pro Längeneinheit sei ρ. Die Krümmung der Knickstelle ist als vernachlässigbar anzusehen, d.h. die relevante Bewegung findet nur in x-Richtung statt.

Ges.:
*Finde geeignete generalisierte Koordinaten und stelle die Lagrangefunktion des Systems auf.
*Leite die Bewegungsgleichungen der generalisierten Koordinaten her.
*Wie verhält sich die Geschwindigkeit der Knickstelle, wenn diese das Seilende erreicht?

Die Angabe gibt es wie üblich als Download, damit du dir das Beispiel in Ruhe selbst ansehen kannst.

Auch hier braucht es zu Beginn einen Ansatz für die generalisierten Koordinaten bzw. die Koordinaten der Schwerpunkte der beiden Teilstücke des Seils. Dabei hilft uns wieder eine Zwangsbedingung, nämlich jene konstanter Seillänge. Dann erhalten wir aus den Koordinaten durch Zeitableitung wieder die Geschwindigkeiten der Seilschwerpunkte. Vorsicht ist hier beim Aufstellen der Energien geboten. Nachdem die Knickstelle des Seils ja wandern soll, muss auch die Masse der Teilstücke sich verändern. Wir haben es also erstmals mit einer zeitabhängigen Masse in der kinetischen Energie zu tun. Diese lässt sich allerdings mit der gegebenen Seilmasse pro Längeneinheit relativ einfach aufstellen. Ähnlich gehen wir bei der potentiellen Energie vor, sodass wir schließlich die Lagrangefunktion anschreiben können. Im nächsten Schritt bestimmen wir die Bewegungsgleichungen der Seilenden und können daraus schließlich eine geschlossene Differentialgleichung bauen. Dann wollen wir aber auch noch wissen, wie sich die Geschwindigkeit der Knickstelle verhält. Durch kluge Substitution finden wir eine sehr einfache Differentialgleichung die sich mit ein wenig Aufwand lösen lässt. Schließlich erhalten wir eine sehr einfach Gleichung für die Geschwindigkeit der Knickstelle. Daran ist abzulesen was passiert, wenn wir ein Seilende erreichen. Allerdings möchte ich das hier noch nicht verraten, sondern die Spannung ein wenig aufrecht erhalten. Um das Phänomen zu erfahren das wir hier mathematisch abgeleitet haben, musst du dir schon das Video ansehen. Viel Spaß damit!

Unterstütze bitte meine Arbeit durch ein Like und eine Weiterempfehlung der Website und meines YouTube Kanals. Falls du es noch nicht getan hast, verhilfst du mir außerdem mit einem Abo zu mehr Sichtbarkeit. Vielen Dank vorab!

Viel Spaß mit diesem etwas aufwändigeren Beispiel und bis bald,
Markus

Lagrange: Physikalisches Pendel an vertikaler Feder

Herzlich Willkommen!

Diesmal habe ich eine Variation eines schon gerechneten Lagrange-Beispiels für euch, nämlich ein physikalisches Einfachpendel an einer vertikalen Feder.

Ein homogenes Stabpendel der Masse M und der Länge 2L ist an seinem Drehpunkt vertikal federnd aufgehängt. Die Federkonstante beträgt c. Die Erdbeschleunigung wirkt vertikal nach unten und das System bewegt sich nur in der Blattebene.

Bestimme für dieses System:
*die kinetische Energie T und die potentielle Energie V sowie die Lagrange Funktion,
*die Bewegungsgleichungen,
*die linearisierte Form der Bewegungsgleichungen,
*die Bedingung für die Übereinstimmung der Eigenfrequenzen von Translations- und Rotationsschwingung.

Die Angabe gibt es wie gewohnt zum Download.

Wir benötigen zu Beginn wieder die Koordinaten und Geschwindigkeiten der Massepunkte im System um die Energien aufstellen zu können. Die Koordinaten des Aufhängepunktes sind, wie auch im Beispiel zum federnd aufgehängten Doppelpendel, nicht notwendig, obwohl sich dieser natürlich bewegt. Allerdings hat auch hier die Feder in dieser Idealisierung keine Masse und damit auch keine Energie und trägt damit auch nichts zur Lagrangefunktion bei. Damit können wir bereits kinetische und potentielle Energie des Systems, sowie die Lagrangefunktion hinschreiben. Über die wohlbekannten Euler-Lagrange-Gleichungen erhalten wir zwei gekoppelte Bewegungsgleichungen. Eine für den Pendelwinkel und eine für die Federauslenkung. Am Ende sehen wir uns noch die linearisierte Form der Bewegungsgleichungen an und stellen fest, dass es auch dort Kopplungen gibt. Alle Details gibt es wie gewohnt im verlinkten Video. Viel Spaß dabei!

Unterstützt bitte auch meine Arbeit durch ein Like und eine Weiterempfehlung der Website und meines YouTube Kanals. Falls ihr es noch nicht getan habt, helft ihr außerdem mit einem Abo des Blogs und des Kanals. Das kostet schließlich nichts. Vielen Dank!

Viel Spaß mit dem Beispiel und bis bald,
Markus