Lagrange: Doppelpendel an Federaufhängung

Herzlich Willkommen!

Wir sehen uns hier einen Klassiker der Lagrange-Mechanik, nämlich das mathematische Doppelpendel, mit einer vertikal federnden Aufhängung an. Das ist auch insofern ein gutes Beispiel für Lagrange-Mechanik, als es sich um insgesamt drei Freiheitsgrade handelt.

Ein mathematisches Doppelpendel ist mittels einer Feder am Koordinatenursprung aufgehängt. Die Pendelmassen seien jeweils m und die Pendellängen l. Die Federkonstante betrage c und die Feder sei in der Position r = r0 vollkommen entspannt.

Ermittle für dieses System:
(a) die generalisierten Koordinaten und Geschwindigkeiten.
(b) die Lagrange Funktion L.
(c) die Bewegungsgleichungen in allen generalisierten Koordinaten.
(d) die Periodendauer T des Systems, wenn die Pendelwinkel durch ein technisches Gebrechen plötzlich fixiert werden, d.h. φ = φ0 = const. und ψ = ψ0 = const.

Die Angabe gibt es wie gewohnt zum Download.

Wir benötigen zu Beginn wieder die Koordinaten und Geschwindigkeiten der Massepunkte im System um die Energien aufstellen zu können. Die Koordinaten des Aufhängepunktes sind nicht notwendig, obwohl sich dieser natürlich bewegt. Allerdings hat er in dieser Idealisierung keine Masse und damit auch keine Energie und trägt damit auch nichts zur Lagrangefunktion bei. Anschließend können wir kinetische und potentielle Energie des Systems, sowie die Lagrangefunktion berechnen. Damit lassen sich über die Euler-Lagrange-Gleichungen drei gekoppelte Bewegungsgleichungen für die beiden Pendelwinkel und die Federauslenkung ableiten. Als Spezialfall betrachten wir dann noch die Bewegung für die Federauslenkung r wenn die beiden Pendelwinkel fixiert werden. Dabei handelt es sich dann direkt um eine Linearisierung und wir können Eigenkreisfrequenz und Periodendauer bestimmt werden. Alle Details inkl. weiterer Diskussionen gibt es wie gewohnt im verlinkten Video. Viel Spaß dabei!

Unterstützt bitte auch meine Arbeit durch ein Like und eine Weiterempfehlung der Website und meines YouTube Kanals. Falls ihr es noch nicht getan habt, helft ihr außerdem mit einem Abo des Blogs und des Kanals. Das kostet schließlich nichts. Vielen Dank!

Viel Spaß mit dem Beispiel und bis bald,
Markus

Arbeitssatz: Massen mit Rolle und Seil

Herzlich Willkommen!

In diesem Beispiel zum Arbeitssatz sehen wir uns ein Beispiel an, das normalerweise oft mit Schwerpunkt- und Drehimpulssatz gerechnet wird. Hier haben wir es aber zusätzlich auch noch mit Reibung zu tun.

Ein über eine Rolle geführtes Seil verbindet zwei Körper mit den Massen m1 und m2 miteinander. Die Masse m1 ist dabei größer als die Masse m2. Es tritt kein Schlupf auf.

Geg.: Θ0, m1, m2, μ

Bestimme die Geschwindigkeit beider Körper in Abhängigkeit vom Ort, wenn das System aus der Ruhe losgelassen wird.

Die Angabe gibt es wie üblich hier zum Download.

Wir beginnen auch hier wieder mit einem Freikörperbild. Darin vermerken wir nicht nur die Kräfte, sondern auch alle dynamische Größen, d.h. Geschwindigkeiten und Winkelgeschwindigkeiten im System. Danach können wir direkt den Arbeitssatz aufstellen. Die Kinematik im System, also die Abrollbedingung, hilft uns, auch die Winkelgeschwindigkeit als Funktion der translatorischen Geschwindigkeit der Massen auszudrücken. Natürlich müssen wir in diesem Beispiel auch den Reibungseinfluss im Arbeitssatz berücksichtigen, also die Reibkraft zwischen schiefer Ebene und Klotz bestimmen. Die Geschwindigkeit der Massen als Funktion des Ortes lässt sich nach sinnvollem Umformen des Arbeitssatzes dann direkt aus diesem bestimmen. Schritt für Schritt erkläre ich den gesamten Rechenweg im verlinkten Video. Viel Spaß bei der Bearbeitung!

Sollten Fragen auftauchen oder ihr Anmerkungen haben, dann zögert bitte nicht mir hier oder auf YouTube einen Kommentar zu hinterlassen. Ich freue mich immer auf eure Rückmeldungen und beantworte sämtlichen Fragen schnell und gerne.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte unbedingt auch ein Like auf YouTube da und abonniert diesen Blog. Außerdem freue ich mich über ein Abo meines YouTube Kanals! Ihr helft mir damit enorm. Vielen Dank!

Viel Spaß mit dem Beispiel und bis bald,
Markus

Lagrange: Pendel mit Feder an beweglicher Aufhängung

Herzlich Willkommen!

In diesem Lagrange-Beispiel geht es um ein mathematisches Pendel, das an einem horizontal frei beweglichen Aufhängepunkt befestigt ist. Außerdem kann sich die Fadenlänge des Pendels über eine Feder ändern.

Ein mathematisches Pendel mit einer eingearbeiteten Feder ist so befestigt, dass sich sein Aufhängepunkt frei in x-Richtung bewegen kann. Die Feder ist bei r = r0 vollkommen entspannt und ihre Federkonstante sei k.

Bestimme
*die generalisierten Koordinaten und Geschwindigkeiten.
*die Lagrange-Funktion des Systems.
*alle Bewegungsgleichungen des gegebenen Federpendels.

Die Angabe gibt es wie gewohnt zum Download.

Der erste Schritt in beinahe jedem Lagrange-Beispiel ist das Aufstellen der relevanten Koordinaten, hier für die Punktmasse. Wichtig ist zu beachten, dass nicht nur ξ und φ zeitabhängig sind, sondern auch die Pendellänge r aufgrund der Feder. Um das bei unseren Ableitungen nicht zu vergessen bietet es sich an explizit r(t) zu schreiben. Abgesehen davon gibt es eigentlich keine Stolpersteine und wir können durch zeitliches Ableiten wieder die Geschwindigkeiten für die Punktmasse bestimmen. Dann geht es auch schon an die Berechnung von kinetischer und potentieller Energie und schließlich der Lagrangefunktion. Da wir hier drei Freiheitsgrade in Form der generalisierten Koordinaten ξ, φ und r vorliegen haben, erhalten wir durch anwenden der Euler-Lagrange Gleichungen natürlich auch drei Bewegungsgleichungen, nämlich eine in jeder dieser generalisierten Koordinaten. Wichtig ist hier wieder, dass diese Bewegungsgleichungen gekoppelt sein müssen. Andernfalls haben wir bei der Berechnung einen Fehler gemacht und müssten noch einmal nachprüfen. Für eine detaillierte Schritt-für-Schritt Rechnung seht euch bitte wieder das verlinkte Video an und stellt gerne jederzeit Fragen dazu.

Unterstützt bitte auch meine Arbeit durch ein Like und eine Weiterempfehlung der Website und meines YouTube Kanals. Falls ihr es noch nicht getan habt, helft ihr außerdem mit einem Abo des Blogs und des Kanals. Das kostet schließlich nichts. Vielen Dank!

Viel Spaß mit dem Beispiel und bis bald,
Markus

Lagrange: Vollzylinder rollt in Hohlzylinder

Herzlich Willkommen!

Wir wollen uns in diesem Beitrag ein relativ komplexes Beispiel aus der Dynamik ansehen und dieses Mittels der Methode von Lagrange lösen.

Ein homogener Hohlzylinder (Masse M, Radius R) sei im Schwerefeld g=−g*ez um eine horizontale Achse durch den Mittelpunkt P drehbar gelagert. In diesem Hohlzylinder rollt ein homogener Vollzylinder (Masse m, Radius r) ohne zu gleiten. Die beiden Zylinderachsen seien parallel.

Zusätzliche Angaben:
O und P raumfeste Punkte, A,B,C und S körperfest auf den Zylindern, sodass im Gleichgewicht C auf O, B auf O und S auf PO liegen,
ψ: Auslenkung des Hohlzylinders aus der Gleichgewichtslage,
χ: Auslenkung des Vollzylinders aus der Gleichgewichtslage,
φ: Winkellage des Schwerpunktes des Vollzylinders

Formulieren Sie die Zwangsbedingungen und legen Sie die generalisierten Koordinaten fest. Bestimmen Sie die Lagrange-Funktion. Wie lauten die Bewegungsgleichungen? Bestimmen Sie die Eigenfrequenz im Fall kleiner Auslenkungen.

Quelle: Aufgabe 1.2.12 (S. 51) aus W. Nolting, Grundkurs Theoretische Physik 2, Analytische Mechanik, 2011, Springer, Berlin

Die Angabe kann wie gewohnt hier heruntergeladen werden.

Die Schwierigkeit in diesem Beispiel liegt vor allem im Aufstellen der Zwangsbedingung (Abrollbedingung), sowie in der Tatsache, dass eine Auslenkung des Vollzylinder-Schwerpunkts bereits auch ein Rollen des Vollzylinders bedingt. Andernfalls würde der Zylinder ja rutschen müssen. Diese Tatsache muss beim Aufstellen der kinetischen Energie besonders berücksichtigt werden. Wir nehmen uns daher im Video genug Zeit das zu tun. Wenn allerdings diese Hürde einmal genommen ist, handelt es sich um ein standardmäßiges Lagrange-Beispiel. Wir erhalten wie gewohnt die Bewegungsgleichungen aus der Lagrangefunktion durch Anwendung der Euler-Lagrange Gleichungen und können diese anschließend linearisieren. Aus der linearisierten Form erhalten wir schließlich auch die gesuchte Eigenkreisfrequenz. Für die Details schau dir bitte wieder das Video an und versuche die einzelnen Schritte möglichst gut nachzuvollziehen. Wenn Fragen auftauchen melde dich bitte sehr gerne in den Kommentaren bei mir. Dafür stelle ich dieses Angebot schließlich zur Verfügung.

Wenn dir das Beispiel und die Musterlösung gefallen haben, dann lass bitte unbedingt ein Like auf YouTube da und abonniere diesen Blog und den YouTube Kanal. Das ist meine größte Motivation auch weiterhin viel Arbeit in dieses Projekt zu stecken. Vielen Dank für deine Unterstützung!

Viel Spaß mit dem Beispiel und bis bald,
Markus

Arbeitssatz: Schwingungsfähiges System aus Scheiben und Federn

Herzlich Willkommen!

Hier ist das erste Beispiel zum Arbeits- bzw. Energiesatz. Es lautet folgendermaßen:

Gegeben ist ein schwingungsfähiges System, bestehend aus zwei gleichen Scheiben (Masse m, Massenträgheitsmoment IS um die Drehachse durch den Schwerpunkt, Radius r). Es tritt kein Gleiten zwischen den Scheiben und dem idealen, undehnbaren Seil auf, Lagerungen reibungsfrei. Eine lineare Feder mit Federkonstante k, eine Drehfeder mit Federkonstante cT.

Ges.:
*die Bewegungsgleichung des Systems mit Hilfe des Energiesatzes.
*die Schwingungsdauer des Systems.

Die Angabe gibt es wie üblich hier zum Download.

In diesem Beispiel sollten wir uns zuerst Gedanken über die Kinematik machen. Dadurch verknüpfen wir die Bewegungskoordinate x mit den Rotationen der Rollen und damit auch dem Weg der Drehfeder oben. Außerdem hilft uns eine Betrachtung des Momentanpols der unteren Rolle. Danach lassen sich die kinetische und potentielle Energie sehr einfach hinschreiben. Die Idee des Energiesatzes ist es dann, dass die Energie erhalten bleibt und damit deren zeitliche Ableitung verschwinden muss. Aus diesem Zusammenhang lässt sich die Bewegungsgleichung des Systems bestimmen. Diese ist schon in der Normalform, weshalb wir dann auch die Periodendauer einfach ablesen können. Schritt für Schritt erkläre ich den gesamten Rechenweg wieder im verlinkten Video. Viel Spaß dabei!

Sollten Fragen auftauchen oder ihr Anmerkungen haben, dann zögert bitte nicht mir hier oder auf YouTube einen Kommentar zu hinterlassen. Ich freue mich auf eure Rückmeldungen.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte unbedingt ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal! Ihr helft mir damit enorm. Vielen Dank!

Viel Spaß mit dem Beispiel und bis bald,
Markus

Lagrange: Kreisscheibe mit Klotz, Pendel und Drehfeder

Herzlich Willkommen!

Wir sehen uns diesmal ein System aus Klotz, Kreisscheibe und Pendel an. Das Pendel ist zudem an seinem Aufhängepunkt mit einer Drehfeder beaufschlagt.

Auf eine in O drehbar gelagerte Kreisscheibe (Radius L, Masse m) ist ein Faden gewickelt, der im Punkt B mit einer Masse m verbunden ist. In A ist eine Stange (Länge 2L, Masse m) über eine Drehfeder (Federkonstante k, in der Lage φ=0, ψ=0 entspannt) mit der Kreisscheibe gelenkig verbunden.

Ges.:
*Lagrange-Funktion des Systems.
*Bewegungsgleichungen in den Koordinaten φ und ψ.

Quelle: Aufgabe 4 (S. 242) aus S. Kessel, Technische Mechanik – Aufgabensammlung mit Musterlösungen, 2000, Dortmund

Die Angabe gibt es wie gewohnt zum Download.

Wie üblich stellen wir zuerst die relevanten Schwerpunktskoordinaten als Funktion unserer generalisierten Koordinaten auf. Daraus lassen sich dann die Geschwindigkeiten durch einfache Zeitableitung bestimmen. Über kinetische und potentielle Energie wird im Anschluss die Lagrangefunktion des Systems ermittelt. Schließlich nutzen wir zur Bestimmung der Bewegungsgleichungen die Euler-Lagrange Gleichung und erhalten zwei gekoppelte Bewegungsgleichungen in den generalisierten Koordinaten. Als wichtigen Punkt diskutieren wir am Ende des Beispiels noch die Bedeutung der Kopplung für die Dynamik des Systems. Ausführlich und mit beliebigen Zwischenstopps lässt sich das alles wieder im verlinkten Video nachvollziehen.

Sollten Fragen auftauchen oder ihr Anmerkungen haben, dann zögert bitte nicht mir hier oder auf YouTube einen Kommentar zu hinterlassen. Ich freue mich auf eure Rückmeldungen.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte unbedingt ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal! Ihr helft mir damit enorm. Vielen Dank!

Viel Spaß mit dem Beispiel und bis bald,
Markus

Kreisel: Rotierender Stab mit Drehfeder

Herzlich Willkommen!

Das letzte Beispiel zur Kreiseldynamik ist schon eine ganze Weile her, deshalb wollen wir uns heute wieder einmal ein solches ansehen.

Ein zylindrischer, homogener Stab (kein dünner Stab) ist in einer rotierenden Gabel reibungsfrei drehbar gelagert und über eine Drehfeder mit dieser verbunden.

Geg.:
homogener Stab: Länge l, Durchmesser 2r, Masse m
lineare Drehfeder: Drehfederkonstante cT, vollkommen entspannt bei ϕ=0
Gabel: Winkelgeschwindigkeit Ω, die durch ein entsprechendes Antriebsmoment MA konstant gehalten wird.

Ges.:
*Wie groß darf Ω höchstens sein, damit der Stab für kleine Winkel ϕ eine Schwingung ausführt?
*Welchen Wert muss das Antriebsmoment MA(ϕ) bei reibungsfreier Lagerung der Gabel annehmen. Anfangsbedingung: ϕ=0, ϕ˙=ν

Hinweis: Verwenden Sie die Euler’schen Kreiselgleichungen.

Quelle: Aufgabe 4.4.4 (S. 42) aus P. Lugner et al., Technische Mechanik, 1992 Springer-Verlag, Wien

Die Angabe zum Download gibt es wie gewohnt ihr hier:

Wie immer ist es wichtig sich anhand einer Skizze, d.h. eines Freikörperbilds bewusst zu machen, welche Kräfte und Momente sowie Geschwindigkeiten und Beschleunigungen im System wirken. Dann können wir hier auch schon die Euler’schen Kreiselgleichungen anschreiben, deren einzelne Terme bestimmen und in die allgemeine Form der Gleichungen einsetzen. Dadurch gelangen wir zu einem Gleichungssystem aus dem wir eine Bewegungsgleichung erhalten. Am Ende müssen wir uns noch darüber Gedanken machen, wann es sich bei dieser Bewegungsgleichung um eine Schwingungsgleichung handelt. All das besprechen wir wieder in voller Schönheit im verlinkten Video.

Sämtliche Fragen beantworte ich wie immer sehr gerne – schreibt sie mir bitte einfach hier oder auf YouTube als Kommentar.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald,
Markus

Lagrange: Schwingender Halbzylinder

Herzlich Willkommen!

Heute geht es in der Lagrange-Mechanik einmal nicht um eine Pendelschwingung, sondern um das Schwingen eines Halbzylinders auf einer festen Unterlage.

Ein Halbzylinder (Masse m, Radius r) wird aus seiner Ruhelage ausgelenkt. Der Schwerpunkt S liegt in einem Abstand von 4r/3π vom Mittelpunkt des Halbkreises entfernt.

Ges.:
*die Bewegungsgleichung des Systems mit Hilfe der Lagrange Gleichungen.
*die linearisierten Bewegungsgleichung und die Schwingungsdauer des Systems.

Die Angabe könnt ihr wie immer hier herunterladen.

In diesem Beispiel sollten wir uns beim Aufstellen der generalisierten Koordinaten ein wenig mehr Zeit nehmen als üblich. Es gibt nämlich eine Kleinigkeit die schnell zu übersehen ist, aber eine fatale Auswirkung auf das Ergebnis hätte. Sind die generalisierten Koordinaten einmal korrekt aufgestellt, kann nicht mehr viel passieren. Wir leiten dann daraus die generalisierten Geschwindigkeiten ab, berechnen kinetische und potentielle Energie und erhalten die Lagrangefunktion. Damit wiederum können wir unsere Bewegungsgleichung berechnen. Am Ende linearisieren wir die Bewegungsgleichung und ermitteln Eigenkreisfrequenz und Periodendauer. Die Details dazu könnt ihr euch im verlinkten Video ansehen.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Viel Spaß mit diesem Beispiel und bis bald,
Markus

Lagrange: Block mit Pendel auf schiefer Ebene

Herzlich Willkommen!

Diesmal geht es um ein System aus einem Block und einem mathematischen Pendel. Das Pendel schwingt um den Schwerpunkt des Blocks, während der Block eine schiefe Ebene entlang gleitet.

Ein Block der Masse M gleite reibungsfrei unter dem Einfluss der Schwerkraft auf einer schiefen Ebene mit Neigungswinkel α gegen die Horizontale. An seinem Schwerpunkt sei die Masse m über einen masselosen Faden der Länge l befestigt.

Ges.:
*Wie lautet die Lagrange-Funktion des Systems sowie dessen Bewegungsgleichungen bzgl. s und φ?
*Errechnen Sie eine geschlossene Differentialgleichung für φ(t).
*Geben Sie die Eigenfrequenz ω der Schwingung für M sehr viel größer als m und kleine Winkelausschläge (φ ~ α) an und zeigen Sie, dass φ(t)=α+φsin(ωt+δ) eine gültige Lösung darstellt.

Hinweis: Zur Vereinfachung der Ergebnisse benötigen Sie die Additionstheoreme cos(α−β)=cosαcosβ+sinαsinβ
sin(α−β)=sinαcosβ−cosαsinβ

Quelle: Aufgabe 1.2.12 (S. 51) aus W. Nolting, Grundkurs Theoretische Physik 2, Analytische Mechanik, 2011, Springer, Berlin

Die Angabe gibt es wie gewohnt als Download inkl. Endergebnissen.

Wir stellen zuallererst wieder die relevanten Koordinaten von Block und Pendelmasse auf und drücken sie als Funktion der generalisierten Koordinate (s und Pendelwinkel) aus. Daraus lassen sich die Geschwindigkeiten bestimmen und anschließend beide Anteile zur Energie, kinetische und potentielle Energie, ermitteln. Dann lassen sich aus der Lagrangefunktion die Bewegungsgleichungen ableiten und eine geschlossene Differentialgleichung für den Pendelwinkel anschreiben. Schließlich können wir die geforderte Linearisierung durchführen. Wie immer gibt es die ausführliche Erklärung im verlinkten Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Viel Spaß mit diesem Beispiel und bis bald,
Markus

Lagrange: Block auf zwei Stangen mit Drehfedern

Herzlich Willkommen!

Wir sehen uns heute ein Beispiel aus der Dynamik an, welches mit der Methode von Lagrange berechnet werden soll. Dabei besprechen wir auch, wie Federn in diesem Zusammenhang zu behandeln sind.

Zwei drehbar gelagerte Stangen (Länge l=0.8 m, Masse m2=5 kg) sind an einem Block (Masse m1=12 kg) gelenkig angeschlossen. Am Ende jeder Stange ist eine Torsionsfeder (Federsteifigkeit K=500 Nm) befestigt. Das System ist in der gezeichneten Lage im Gleichgewicht.

Ges.:
*die Lagrange Funktion,
*die Bewegungsgleichung mittels der Methode von Lagrange,
*die Eigenfrequenz f und die Periodendauer T für kleine Auslenkungen um die Gleichgewichtslage.

Die Angabe gibt es wie gewohnt als Download inkl. Endergebnissen.

Wir stellen zuallererst die relevanten Koordinaten auf und drücken sie als Funktion der generalisierten Koordinate (Stangenwinkel) aus. Daraus lassen sich die Geschwindigkeiten bestimmen und anschließend beide Anteile zur Energie, kinetische und potentielle Energie, ermitteln. Die Energien der Federn müssen als Anteil der potentiellen Energie mit berücksichtigt werden. Dann lässt sich aus der Lagrangefunktion die Bewegungsgleichung ableiten und Eigenfrequenz und Periodendauer für den linearisierten Fall bestimmen. Wie immer gibt es die ausführliche Erklärung im verlinkten Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Viel Spaß mit diesem Beispiel und bis bald,
Markus