Prinzip von d’Alembert: Rollen & Walzen

Herzlich Willkommen!

Es gab schon längere Zeit kein Beispiel zum Prinzip von d’Alembert. Das wollen wir diesmal ändern.

Gegeben sei das skizzierte System aus Rollen und Massen.

Ges.:
*sämtliche Bewegungsgleichungen des Systems.
*die Beschleunigung der Masse 5m.

Die Angabe gibt es natürlich wieder als Download, damit du das Beispiel vorab selbst rechnen kannst.

In diesem Fall ist zwar sehr einfach aufzustellen welche Koordinaten und Zwangsbedingungen notwendig sind, die Rechnung selbst ist aber etwas aufwändiger. Typischerweise lösen wir ein solches Problem, indem wir das Prinzip von d’Alembert allgemein anschreiben und dann die Zwangsbedingungen einsetzen. Nachdem die Dynamik der Masse 5m gesucht ist, sollten wir lediglich darauf achten die Koordinaten dieser Masse in unseren Gleichungen zu behalten. Anschließend lassen sich mittels Koeffizientenvergleich und auflösen des entstehenden Gleichungssystems direkt die Beschleunigungen der Massen – insbesondere der Masse 5m – bestimmen. Das und noch einige zusätzliche Erklärungen und Nebenbemerkungen findest du im verlinkten YouTube Video. Viel Spaß damit!

Auch die Musterlösung stelle ich, wie gewohnt, als pdf zum Download zur Verfügung.

Wenn ihr Fragen habt schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen schnellstmöglich beantworten.

Hat euch das Video gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Alles Gute und bis bald,
Markus

Prinzip von d’Alembert: Brett auf Walzen

Herzlich Willkommen!

Heute sehen wir uns wieder einmal ein Beispiel zum Prinzip von d’Alembert an.

Eine Platte der Masse M ruht auf zwei Walzen, die jeweils die Masse m und den Radius r besitzen. Die linke Walze ist als Vollzylinder, die rechte als dünnwandiger Hohlzylinder ausgeführt.

Ges.:
*Bestimme die Beschleunigung der Platte unter der Annahme, dass kein Gleiten auftritt, mit Hilfe des Prinzips von d’Alembert.

Die Angabe gibt es natürlich wieder als Download inkl. Endergebnissen, damit ihr das Beispiel vorab selbst rechnen könnt.

Diese rechnerisch eher kurze Aufgabe eignet sich sehr gut dazu das Prinzip von d’Alembert genauer zu erklären. Wir diskutieren also welche Beiträge es gibt und woher diese kommen. Außerdem klären wir was es mit den d’Alembert’schen Trägheitstermen und Trägheitskräften auf sich hat. Im Zuge dessen rechnen wir selbstverständlich auch die gefragte Beschleunigung des Brettes aus. Das und noch einiges mehr gibt es wieder im verlinkten YouTube Video zu sehen. Viel Spaß damit!

Wenn ihr Fragen habt schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen schnellstmöglich beantworten.

Hat euch das Video gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Alles Gute und bis bald,
Markus

Prinzip von d’Alembert: Rollensystem mit Federn

Herzlich Willkommen!

Heute sehen wir uns ein Beispiel zum Prinzip von d’Alembert an.

Gegeben ist das nachfolgend dargestellte schwingungsfähige mechanische System, bestehend aus Rollen, Massen und Federn. Die Masse m wird gehalten und zum Zeitpunkt t=0 losgelassen. Zu Beginn sind alle Federn entspannt.

Geg.:
m, I, c, k, R, r

Ges.:
*Die Winkelkoordinaten φ1, φ2, φ3 als Funktion von x(t)
*Sämtliche Beiträge zum Prinzip von d’Alembert
*Die Bewegungsgleichung des Systems sowie dessen Eigenkreisfrequenz
*Das Bewegungs-Zeit-Gesetz x(t)

Die Angabe gibt es natürlich wieder als Download inkl. Endergebnissen, damit ihr das Beispiel vorab selbst rechnen könnt.

Für die Lösung dieser Aufgabe überlegen wir uns zuerst die Kinematik an den einzelnen Rollen. Dazu nutzen wir zur besseren Veranschaulichung ein Freikörperbilder. Dann sind alle kinematischen Beziehungen aufzustellen. Wir werden feststellen, dass es nur einen Freiheitsgrad im System gibt. Damit können alle kinematischen Größen als Funktion der Variable x(t) ausgedrückt werden und es gibt am Ende auch nur eine Bewegungsgleichung. Um die Bewegungsgleichung zu berechnen nutzen wir das Prinzip von d’Alembert. Dafür ist es wiederum nötig die virtuelle Arbeit von äußeren und inneren Kräften, sowie die virtuelle Arbeit der Trägheitskräfte aufzustellen. Am Ende können wir dann die Bewegungsgleichung lösen und das Bewegungs-Zeit-Gesetz anschreiben. Wie das im Detail funktioniert erkläre ich im untenstehenden YouTube Video.

Wenn ihr Fragen habt schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen schnellstmöglich beantworten.

Hat euch das Video gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Viel Spaß beim Rechnen und bis spätestens Donnerstag zum nächsten Beispiel,
Markus

Kreiseldynamik: Mühlstein

Herzlich Willkommen!

Heute wollen wir uns ein Beispiel aus dem Bereich Kreiseldynamik ansehen, und zwar folgende Mühle:

Die dargestellte Mühle wird mit der Winkelgeschwindigkeit Ω=const. angetrieben. Der Mühlstein habe seinen Schwerpunkt in S, seine Masse sei m und seine Massenträgheitsmomente I1 sowie I2=I3.

Ges.:
*die erforderliche Winkelgeschwindigkeit ω=const., sodass der Mühlstein im Punkt P mit der Geschwindigkeit -vp e2 gleitet.
*die Beschleunigung des Punktes P.
*die Winkelgeschwindigkeit des Mühlsteins im e_1-e_2-e_3 Koordinatensystem.
*die resultierende Einzelkraft und das resultierende Moment bei Reduktion in den Koordinatenursprung.

Die Angabe gibt es als Download inkl. Lösungen um das Beispiel vorab rechnen zu können.

Um diese Aufgabe zu lösen, bedienen wir uns einer Mischung aus Kinematik, Relativkinematik und natürlich Schwerpunkt- und Drehimpulssatz. Zuerst muss bestimmt werden wie groß für gegebenes vp die Winkelgeschwindigkeit ω wird. Dann können wir uns überlegen welche absolute Beschleunigung der Schwerpunkt des Mühlsteins S aufweist. Aus dieser absoluten Beschleunigung lässt sich dann der Schwerpunktsatz anschreiben und die Kräfte berechnen. Zum Schluss bestimmen wir noch den Drehimpuls für den Mühlstein und berechnen aus diesem die Momente. Wie das im Detail funktioniert erkläre ich im angehängten YouTube Video.

Wenn ihr Fragen habt schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen schnellstmöglich beantworten.

Hat euch das Video gefallen? Dann lasst bitte ein Like auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video zu verpassen. Ihr helft mir damit enorm. Vielen Dank!

Bis nächste Woche mit einem weiteren Beispiel,
Markus