Relativkinematik: Eisenbahnkran

Herzlich Willkommen!

Wir hatten erst vor kurzem das fahrende Feuerwehrauto als Beispiel der Relativkinematik. Ein sehr ähnliches Beispiel wollen wir uns hier ansehen, nämlich einen Eisenbahnkran mit folgender Angabe:

Der Eisenbahnkran lt. Skizze fährt mit der Geschwindigkeit v und der Beschleunigung a in Richtung der positiven y−Achse, während der Ausleger sich mit der Winkelgeschwindigkeit ω1 und der Winkelbeschleunigung ω˙1 um die z−Achse dreht. Im gezeichneten Augenblick (Winkellage θ) richtet sich der Ausleger mit konstanter Winkelgeschwindigkeit θ˙ auf.
Geg.: d = 3m, l = 20m, v = 2m/s, a = 1.5m/s², θ = 30°, ω1 = 0.5 1/s, ω˙1 = 3 1/s², θ˙ = 3 1/s

Bestimme Geschwindigkeit und Beschleunigung der Spitze B des Auslegers zum gezeichneten Zeitpunkt.

Quelle: Aufgabe 9.38 (S. xxx) aus Russell C. Hibbeler, Technische Mechanik 3 Dynamik, 12. Auflage, 2012 Pearson GmbH, München

Hier wie gewohnt zuerst einmal die Angabe zum Download:

Wir stellen bei diesem Beispiel einen Ortsvektor auf, der sich am analytischen Prinzip orientiert, d.h. vom Koordinatenursprung 0 bis zum Punkt B reicht. Natürlich lässt sich die Rechnung auch aufsplitten in einen Teil 0-A sowie einen zweiten Teil A-B, aber aus meiner Sicht bietet der direkte Vektor den einfacheren Zugang. Danach müssen wir nur noch Geschwindigkeit und Beschleunigung mittels der bekannten Formeln aus der Relativkinematik bestimmen und sind mit dem Beispiel auch schon fertig. Die genaue Erklärung dazu und auch eine kurze Diskussion über die Praxisrelevanz solcher Berechnungen finden sich wie gewohnt im verlinkten Video!

Den Lösungsweg in Form eines herunterladbaren pdf-Files findet ihr hier.

Bei Fragen oder Anmerkungen zu Beispiel oder Rechenweg bitte einfach hier oder auf YouTube einen Kommentar hinterlassen. Ich freue mich auf eure Rückmeldungen und beantworte gerne alle Fragen.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald,
Markus

Relativkinematik: Drehleiter am bewegten Fahrzeug

Herzlich Willkommen!

Wir sehen uns in diesem Beitrag ein Beispiel zur Relativkinematik an. Es geht dabei um ein Fahrzeug, ein Feuerwehrauto, welches mit einer Drehleiter ausgestattet ist und während der Fahrt die Leiter ausfährt und hochschwenkt. Die Geschwindigkeiten und Beschleunigungen am Leiterende wollen wir bestimmen.

Auf einem mit der konstanten Geschwindigkeit v0 fahrenden Fahrzeug ist eine Leiter montiert, die so bewegt wird, dass b(t)=2v0t und α(t)=Ωt gilt.

Bestimme die Absolutgeschwindigkeit sowie die Absolutbeschleunigung des Punktes C im raumfesten Koordinatensystem ex, ey.

Hier wie gewohnt zuerst einmal die Angabe zum Download:

Dieses Beispiel bietet sich an unterschiedliche Zugänge zur Relativkinematik aufzuzeigen. Genau das machen wir hier. Wir sehen uns einerseits an wie sich Geschwindigkeit und Beschleunigung des Punktes C direkt aus einem Abstandvektor bestimmen lassen und andererseits wie das ganze mittels klassischem Relativkinematik-Zugang funktioniert, also über Relativ- und Führungssystem. Am Ende werden wir feststellen, dass in beiden Fällen das gleiche Ergebnis für die Absolutgeschwindigkeit und -beschleunigung entsteht (muss es ja auch, denn der Physik ist schließlich egal wie wir rechnen), die einzelnen Beiträge sich aber unterscheiden. Wie das alles genau geht und worauf zu achten ist besprechen wir im verlinkten Video. Viel Spaß damit!

Wie schon beim letzten Beispiel gibt es auch hier wieder den Lösungsweg als pdf-Download. Ich würde mich über Rückmeldungen freuen ob ihr diese pdfs auch nutzt bzw. plant zu nutzen.

Bei Fragen oder Anmerkungen zu Beispiel oder Rechenweg bitte einfach hier oder auf YouTube einen Kommentar hinterlassen. Ich freue mich auf eure Rückmeldungen und beantworte gerne alle Fragen.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald,
Markus

Energiesatz: Rollendes Rad an Feder (Schwingung)

Herzlich Willkommen!

Es geht wieder einmal um den Arbeits- und Energiesatz. Wie schon beim letzten Beispiel zu diesem Thema eigentlich nur um den Energiesatz, denn das System ist konservativ, wie die folgende Angabe zeigt.

Ein Rad mit der Masse m und dem Trägheitsradius is rollt ohne zu gleiten. Im entspannten Zustand hat die Feder die Länge l0 und die Federkonstante c. In der skizzierten Position wird das Rad aus der Ruhe freigegeben.
Geg.: m = 60 kg, is = 0.6 m, r = 1 m, l = 3 m, l0 = 0.5 m, c = 10 N/m, β = 60°

Ges.:
*der allgemeine Ausdruck für die Winkelgeschwindigkeit ω des Rades, nachdem es sich um den Winkel β im Uhrzeigersinn verdreht hat.
*der Zahlenwert für diese Winkelgeschwindigkeit ω.

Die Angabe gibt es natürlich wie gewohnt hier als Download.

Die Lösung dieses Beispiels ist an sich recht kurz, erfordert aber einige Überlegungen zur Geometrie. So müssen wir uns insbesondere Gedanken darüber machen wie sich die Federlänge in Abhängigkeit von der Rollbewegung des Rades ändert. Wenn das erledigt ist und wir uns für eine Betrachtung am Momentanpol des Rades entscheiden, ist alles weitere schnell aufgeschrieben. Es gibt in diesem Fall nur eine kinetische Energie der Rotation und die potentiellen Energien der Feder zu Beginn und am Ende. Damit lässt sich leicht die Winkelgeschwindigkeit des Rades als Funktion des Drehwinkels bestimmen. Die Details dazu findest du wie gehabt im verlinkten Video.


Ich beginne ab diesem Beispiel auch damit pdf-Dateien des Lösungsweges bereitzustellen. Falls das für dich interessant ist, hinterlasse mir gerne einen Kommentar, dann kann ich gerne auch bei schon besprochenen Beispielen solche pdfs nachreichen.

Sollten Fragen auftauchen oder ihr Anmerkungen haben, dann zögert bitte nicht mir hier oder auf YouTube einen Kommentar zu hinterlassen. Ich freue mich immer auf eure Rückmeldungen und beantworte sämtlichen Fragen schnell und gerne.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte unbedingt auch ein Like auf YouTube da und abonniert diesen Blog. Außerdem freue ich mich über ein Abo meines YouTube Kanals! Ihr helft mir damit enorm. Vielen Dank!

Viel Spaß mit dem Beispiel und bis bald,
Markus

Relativkinetik: Person auf Platte & Rollen

Herzlich Willkommen!

Wir sehen uns in diesem Beitrag ein Beispiel zur Relativkinetik an, welches ein wenig unüblich ist. Warum, das werden wir im Verlauf des Beispiels klären.

Ein Mann der Masse m1 bewegt sich lt. Skizze mit konstanter Relativbeschleunigung arel auf einem Brett der Masse m2. Das Brett liegt auf zwei Rollen mit jeweils Radius r, Masse m3 und Massenträgheitsmoment J. Die Walzen stützen sich am Boden ab und rollen bei der Bewegung ohne zu rutschen.

Geg.: arel, m1, m2, m3, J, r

Bestimme:
*die Absolutgeschwindigkeit v2(t) des Brettes. Dabei gilt v2(t=0)=0.
*die Absolutgeschwindigkeit v1(t) des Mannes.

Quelle: Aufgabe D33 (S. 353f) aus J. Berger, Klausurentrainer Technische Mechanik, 2008, Vieweg+Teubner, Wiesbaden

Und wie immer die Angabe zum Download:

Die Andersartigkeit dieses Beispiels liegt daran, dass es sinnvoll ist Schwerpunkt- und Momentensätze als Ausgangspunkt für die Berechnung zu verwenden, ähnlich wie im Beispiel Block rutscht auf Keil. Sonst gehen wir ja in der Relativkinetik oft von den Geschwindigkeits- und Beschleunigungszusammenhängen aus und nutzen erst zum Schluss Schwerpunkt- und Momentenssätze. Wir machen uns zwar auch hier zu Beginn Gedanken über die Kinematik, aber diese fallen sehr einfach aus. Ausgangspunkt ist daher ein sauberes Freikörperbild in dem wir sämtliche Kräfte und dynamischen Größen notieren. Darauf aufbauend lassen sich dann alle Schwerpunkt- und Momentensätze für die Teile des Systems aufstellen. Damit können wir anschließend bereits die Beschleunigung für das Brett berechnen. Diese führt uns auf direktem Wege, durch Zeitintegration, zur Geschwindigkeit des Bretts und schließlich über die Kinematik zur Geschwindigkeit der Person am Brett. Alle Details gibt es natürlich wieder im verlinkten Video. Viel Spaß damit!

Bei Fragen oder Anmerkungen zu Beispiel oder Rechenweg bitte einfach hier oder auf YouTube einen Kommentar hinterlassen. Ich freue mich auf eure Rückmeldungen und beantworte gerne alle Fragen.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald,
Markus

Arbeitssatz: Massen mit Rolle und Seil

Herzlich Willkommen!

In diesem Beispiel zum Arbeitssatz sehen wir uns ein Beispiel an, das normalerweise oft mit Schwerpunkt- und Drehimpulssatz gerechnet wird. Hier haben wir es aber zusätzlich auch noch mit Reibung zu tun.

Ein über eine Rolle geführtes Seil verbindet zwei Körper mit den Massen m1 und m2 miteinander. Die Masse m1 ist dabei größer als die Masse m2. Es tritt kein Schlupf auf.

Geg.: Θ0, m1, m2, μ

Bestimme die Geschwindigkeit beider Körper in Abhängigkeit vom Ort, wenn das System aus der Ruhe losgelassen wird.

Die Angabe gibt es wie üblich hier zum Download.

Wir beginnen auch hier wieder mit einem Freikörperbild. Darin vermerken wir nicht nur die Kräfte, sondern auch alle dynamische Größen, d.h. Geschwindigkeiten und Winkelgeschwindigkeiten im System. Danach können wir direkt den Arbeitssatz aufstellen. Die Kinematik im System, also die Abrollbedingung, hilft uns, auch die Winkelgeschwindigkeit als Funktion der translatorischen Geschwindigkeit der Massen auszudrücken. Natürlich müssen wir in diesem Beispiel auch den Reibungseinfluss im Arbeitssatz berücksichtigen, also die Reibkraft zwischen schiefer Ebene und Klotz bestimmen. Die Geschwindigkeit der Massen als Funktion des Ortes lässt sich nach sinnvollem Umformen des Arbeitssatzes dann direkt aus diesem bestimmen. Schritt für Schritt erkläre ich den gesamten Rechenweg im verlinkten Video. Viel Spaß bei der Bearbeitung!

Sollten Fragen auftauchen oder ihr Anmerkungen haben, dann zögert bitte nicht mir hier oder auf YouTube einen Kommentar zu hinterlassen. Ich freue mich immer auf eure Rückmeldungen und beantworte sämtlichen Fragen schnell und gerne.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte unbedingt auch ein Like auf YouTube da und abonniert diesen Blog. Außerdem freue ich mich über ein Abo meines YouTube Kanals! Ihr helft mir damit enorm. Vielen Dank!

Viel Spaß mit dem Beispiel und bis bald,
Markus

Relativkinetik: Masse in rotierendem Rohr an Feder

Herzlich Willkommen!

Diesmal geht es um eine Variation eines Klassikers der Relativkinetik, nämlich eine Masse in einem rotierenden Rahmen, welche zusätzlich an einem Ende mit einer Feder verbunden ist.

In einem Rahmen, der sich nach dem vorgegebenen Winkel-Zeit-Gesetz φ(t) in der xy-Ebene um den raumfesten Punkt 0 dreht, kann reibungsfrei eine Masse m gleiten, die mit einer Feder (Federkonstante c) verbunden ist. In der Lage q=L sei die Feder entspannt.

Berechne bezogen auf die Masse m folgende Größen:
*Ortsvektor des Schwerpunktes
*Relativgeschwindigkeit, Führungsgeschwindigkeit und Absolutgeschwindigkeit
*Relativbeschleunigung, Führungsbeschleunigung, Coriolisbeschleunigung, Absolutbeschleunigung
*Bewegungsgleichung der Relativbewegung der Masse im rotierenden Bezugssystem.
*Normalkraft als Funktion der kinematischen Größen und der Masse m

Und wie immer die Angabe zum Download:

Wir stellen zuallererst, wie in der Angabe gefordert, den Ortsvektor für die Masse auf. Dann können wir aus Relativ- und Führungsgeschwindigkeit den Vektor der Absolut-geschwindigkeit, sowie aus den Beschleunigungskomponenten eben den Absolut-beschleunigungsvektor berechnen. Mit Hilfe des Schwerpunktsatzes erhalten wir schließlich die Bewegungsgleichung für die Masse und können auch die Normalkraft auf die Masse bestimmen. Eine genaue Anleitung dazu mit den üblichen weiterführenden Erklärungen findest du im angehängten Video.

Bei Fragen oder Anmerkungen zu Beispiel oder Rechenweg bitte einfach hier oder auf YouTube einen Kommentar hinterlassen. Ich freue mich auf eure Rückmeldungen und beantworte gerne alle Fragen.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald,
Markus

Arbeitssatz: Schwingungsfähiges System aus Scheiben und Federn

Herzlich Willkommen!

Hier ist das erste Beispiel zum Arbeits- bzw. Energiesatz. Es lautet folgendermaßen:

Gegeben ist ein schwingungsfähiges System, bestehend aus zwei gleichen Scheiben (Masse m, Massenträgheitsmoment IS um die Drehachse durch den Schwerpunkt, Radius r). Es tritt kein Gleiten zwischen den Scheiben und dem idealen, undehnbaren Seil auf, Lagerungen reibungsfrei. Eine lineare Feder mit Federkonstante k, eine Drehfeder mit Federkonstante cT.

Ges.:
*die Bewegungsgleichung des Systems mit Hilfe des Energiesatzes.
*die Schwingungsdauer des Systems.

Die Angabe gibt es wie üblich hier zum Download.

In diesem Beispiel sollten wir uns zuerst Gedanken über die Kinematik machen. Dadurch verknüpfen wir die Bewegungskoordinate x mit den Rotationen der Rollen und damit auch dem Weg der Drehfeder oben. Außerdem hilft uns eine Betrachtung des Momentanpols der unteren Rolle. Danach lassen sich die kinetische und potentielle Energie sehr einfach hinschreiben. Die Idee des Energiesatzes ist es dann, dass die Energie erhalten bleibt und damit deren zeitliche Ableitung verschwinden muss. Aus diesem Zusammenhang lässt sich die Bewegungsgleichung des Systems bestimmen. Diese ist schon in der Normalform, weshalb wir dann auch die Periodendauer einfach ablesen können. Schritt für Schritt erkläre ich den gesamten Rechenweg wieder im verlinkten Video. Viel Spaß dabei!

Sollten Fragen auftauchen oder ihr Anmerkungen haben, dann zögert bitte nicht mir hier oder auf YouTube einen Kommentar zu hinterlassen. Ich freue mich auf eure Rückmeldungen.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte unbedingt ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal! Ihr helft mir damit enorm. Vielen Dank!

Viel Spaß mit dem Beispiel und bis bald,
Markus

Relativkinetik: Masse in rotierendem Rohr

Herzlich Willkommen!

Ein absoluter Klassiker der Relativkinetik ist eine Masse die sich reibungsfrei in einem rotierenden Rohr bewegen kann. Genau das wollen wir uns hier ansehen.

Ein Teilchen P mit der Masse m kann sich reibungsfrei in einem um die z-Achse drehbaren Rohr der Länge l bewegen. Das Rohr rotiert mit der Winkelgeschwindigkeit Ω, die Winkelbeschleunigung beträgt Ω˙. Für die Anfangsbedingungen r(0)=r0 größer 0 und r˙(0)=0 sind die untenstehende Größen zu berechnen.

*Ortsvektor r_P(t)
*Relativgeschwindigkeit v_R, Führungsgeschwindigkeit v_F und Absolutgeschwindigkeit v_P
*Relativbeschleunigung a_R, Führungsbeschleunigung a_F, Coriolisbeschleunigung a_C und Absolutbeschleunigung a_P.
*Kräfte auf die Masse *Abstand r(t) von der Drehachse für den Spezialfall Ω=const.

Hinweis: Alle Vektoren sind im mitrotierenden ξ,η,ζ System darzustellen.

Und wie immer die Angabe zum Download:

Zum Ablaufplan der Rechnung ist hier eigentlich nicht viel zu sagen. Die Punkte (a) – (e) in der Angabe stellen nämlich bereits einen guten Ablaufplan zur Verfügung. Wir halten uns einfach daran und können auf direktem Wege alles berechnen. Natürlich könnt ihr den Rechenweg wieder Schritt für Schritt im verlinkten Video nachverfolgen. Viel Spaß damit!

Bei Fragen oder Anmerkungen zu Beispiel oder Rechenweg bitte einfach hier oder auf YouTube einen Kommentar hinterlassen. Ich freue mich auf eure Rückmeldungen.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis demnächst,
Markus

Kreisel: Rotierender Stab mit Drehfeder

Herzlich Willkommen!

Das letzte Beispiel zur Kreiseldynamik ist schon eine ganze Weile her, deshalb wollen wir uns heute wieder einmal ein solches ansehen.

Ein zylindrischer, homogener Stab (kein dünner Stab) ist in einer rotierenden Gabel reibungsfrei drehbar gelagert und über eine Drehfeder mit dieser verbunden.

Geg.:
homogener Stab: Länge l, Durchmesser 2r, Masse m
lineare Drehfeder: Drehfederkonstante cT, vollkommen entspannt bei ϕ=0
Gabel: Winkelgeschwindigkeit Ω, die durch ein entsprechendes Antriebsmoment MA konstant gehalten wird.

Ges.:
*Wie groß darf Ω höchstens sein, damit der Stab für kleine Winkel ϕ eine Schwingung ausführt?
*Welchen Wert muss das Antriebsmoment MA(ϕ) bei reibungsfreier Lagerung der Gabel annehmen. Anfangsbedingung: ϕ=0, ϕ˙=ν

Hinweis: Verwenden Sie die Euler’schen Kreiselgleichungen.

Quelle: Aufgabe 4.4.4 (S. 42) aus P. Lugner et al., Technische Mechanik, 1992 Springer-Verlag, Wien

Die Angabe zum Download gibt es wie gewohnt ihr hier:

Wie immer ist es wichtig sich anhand einer Skizze, d.h. eines Freikörperbilds bewusst zu machen, welche Kräfte und Momente sowie Geschwindigkeiten und Beschleunigungen im System wirken. Dann können wir hier auch schon die Euler’schen Kreiselgleichungen anschreiben, deren einzelne Terme bestimmen und in die allgemeine Form der Gleichungen einsetzen. Dadurch gelangen wir zu einem Gleichungssystem aus dem wir eine Bewegungsgleichung erhalten. Am Ende müssen wir uns noch darüber Gedanken machen, wann es sich bei dieser Bewegungsgleichung um eine Schwingungsgleichung handelt. All das besprechen wir wieder in voller Schönheit im verlinkten Video.

Sämtliche Fragen beantworte ich wie immer sehr gerne – schreibt sie mir bitte einfach hier oder auf YouTube als Kommentar.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald,
Markus

Relativkinetik: Masse an Federn in rotierender Scheibe

Herzlich Willkommen!

Heute sehen wir uns eine Masse an, die an beiden Enden mit Federn in der Nut einer rotierenden Scheibe befestigt ist und durch die Drehbewegung der Scheibe schwingt.

In der glatten Nut einer Scheibe, die sich mit der Winkelgeschwindigkeit ω=const. dreht, ist eine Masse m an Federn (Federkonstante c ) befestigt.

Ges.:
*Bewegungsgleichung im bewegten ξ – η System.
*Kraft von der Nut auf die Masse
*Welche Eigenfrequenz stellt sich für die Bewegung der Masse ein?
*Winkelgeschwindigkeit ωcrit, bei der die Masse m mit der Scheibe rotiert, ohne in der Nut hin- und her zu schwingen.

Und wie immer die Angabe zum Download:

Den Anfang macht auch hier ein Freikörperbild um die Geometrie und damit die Beschleunigung sowie die Kräfte auf die Masse definieren zu können. All diese Größen können wir dann mittels relativkinetischen Gleichungen und Schwerpunktsatz berechnen. Die Schritte im Detail, besprechen wir natürlich wieder ausführlich im verlinkten Video.

Bei Fragen oder Anmerkungen zu Beispiel oder Rechenweg bitte einfach hier oder auf YouTube einen Kommentar hinterlassen. Ich freue mich auf eure Rückmeldungen.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis demnächst,
Markus