Herzlich Willkommen!

Es geht wieder einmal um den Arbeits- und Energiesatz. Wie schon bei vorhergehenden Beispielen zur Thematik eigentlich nur um den Energiesatz, denn das System ist konservativ, wie die Angabe vermuten lässt.

Eine dünne Halbzylinderschale der Masse m rollt ohne zu rutschen auf einer Ebene. Die Schale wird dabei aus der dargestellten Lage aus der Ruhe losgelassen.

Bestimme mittels Energiesatz:
*die Winkelgeschwindigkeit φ˙(φ) in Abhängigkeit der Lage φ
*den Winkel φ bei dem die Winkelgeschwindigkeit ihr Maximum erreicht.

Die Angabe als Download gibt es hier. Probiere vielleicht zuerst die Lösung selbst zu finden und schaue dir dann erst meine Musterlösung an. Das hilft in der Regel enorm beim Verständnis.

Wir haben in diesem Fall jeweils die Energien zum Startzeitpunkt sowie für eine beliebige Winkellage aufzustellen. Dafür benötigen wir zuvor die Winkelgeschwindigkeit der Halbzylinderschale (über das analytische Prinzip einfach errechenbar) sowie auch die Lage des Schwerpunkts. Außerdem wird es am einfachsten sein die kinetische Energie der Rotation zu verwenden, also brauchen wir auch noch das Massenträgheitsmoment der Schale. Ist das alles bestimmt lassen sich die Energieterme einfach hinschreiben und über Energieerhaltung miteinander verknüpfen. Damit erhalten wir direkt einen Ausdruck für die Winkelgeschwindigkeit als Funktion des Winkels selbst. Im Detail sprechen wir wieder im Video über die Lösung. Viel Spaß beim Anschauen!


Es gibt natürlich auch wieder die Musterlösung als pdf – lade es gerne herunter.

Solltest du fragen haben bitte schreibe gerne hier oder auf YouTube einen Kommentar. Mich interessiert natürlich auch was du generell zu diesem Beispiel und meiner Musterlösung sagst. Gerne jederzeit melden.

Wenn dir die Website und mein YouTube Kanal weiterhelfen, dann lass mir auch gerne ein Abo da und gib die Links an deine Studienkolleg*innen weiter.

Alles Gute, viel Spaß und bis bald,
Markus

Kommentar verfassen