Statik: Balken auf Stäben unter Streckenlast

Herzlich Willkommen!

Heute sehen wir uns ein konkretes Beispiel an, wie wir einerseits mit Stäben und Stabkräften umgehen und andererseits eine dreiecksförmige Streckenlast in unsere Rechnung mit einbeziehen. Die Angabe für dieses Problem lautet kurz und knackig folgendermaßen:

Ein Balken unter Dreiecksbelastung wird von drei Stäben gestützt. Wie groß sind die Stabkräfte?

Quelle: Aufgabe I.4.1 (S. 20f.) aus W. Hauger et al., Aufgaben zu Technische Mechanik 1-3, 7. Auflage, 2012 Springer, Heidelberg

Das Freikörperbild ist auch hier unser zentraler Zugang zur Lösung des Problems. Wir ersetzen dabei, wie in der Theorie besprochen, die dreiecksförmige Streckenlast gegen eine äquivalente Einzellast. Dann müssen wir uns noch Gedanken zu den Stabkräften machen. Dabei ist zu berücksichtigen, dass idealisierte Stäbe nur Kräfte in Längsrichtung (Zug & Druck), aber keine Kräfte quer zum Stab aufnehmen können. Schließlich bestimmen wir noch über die Geometrie den Winkel der beiden Stäbe 1 und 3. Mit diesen Zutaten lassen sich die Gleichgewichtsbedingungen problemlos aufstellen und das System aus 3 Gleichungen anschließend lösen. Im Detail besprechen wir den Lösungsweg wieder im verlinkten Video.


Wenn Fragen oder Unklarheiten auftauchen, freue ich mich jederzeit auf eure Kommentare – entweder hier oder direkt auf YouTube.

Bis bald,
Markus

Stoß: Physikalisches Pendel trifft auf Wand

Herzlich Willkommen!

Im Stoßbeispiel, dass wir uns für heute vornehmen möchten, geht es um ein physikalisches Pendel mit einer Pendelkugel. Diese Pendelkugel wird aus der Ruhe losgelassen und trifft am tiefsten Punkt an eine Wand. Der Stoßvorgang selbst hat dabei eine definierte Stoßziffer ε, ist also weder vollkommen elastisch noch vollkommen plastisch.

Das abgebildete Pendel besteht aus einer Vollkugel mit Radius r und Masse mK und einem schlanken Stab mit Länge l und Masse mS. Ein Ende des Stabes ist in A mit Abstand r zur Wand frei drehbar gelagert. Das Pendel wird in der Winkellage θ=θ1 aus der Ruhe freigegeben. Die Stoßziffer ist ε.

Geg.: mK=50kg,mS=20kg,l=2m,r=0.3m,ε=0.6,θ1=0∘

Bestimme den Winkel θ=θ2, bis zu dem das Pendel zurückschwingt nachdem es an der Wand angestoßen ist.

Quelle: Aufgabe 8.52 (S. 582) aus Russell C. Hibbeler, Technische Mechanik 3 Dynamik, 2012 Pearson Deutschland GmbH

Die Angabe gibt es wie gewohnt zum Download. Somit könnt ihr das Beispiel zuerst selbst rechnen und dann mit der Musterlösung vergleichen.

Wir können in diesem Fall die Winkelgeschwindigkeit des Pendels unmittelbar vor dem Stoß mittels Energieerhaltung sehr einfach berechnen. Für den Stoßvorgang selbst ist dann nur noch die Newton’sche Stoßhypothese – also das Verhältnis aus relativer Trennungsgeschwindigkeit zu relativer Annäherungsgeschwindigkeit – relevant, sowie eine kinematische Überlegung aus der wir die Geschwindigkeiten am Stoßpunkt selbst erhalten. Damit lässt sich die Winkelgeschwindigkeit des Pendels unmittelbar nach dem Stoß berechnen. Zum Schluss können wir dann wieder Energieerhaltung anwenden und damit bestimmen wie weit das Pendel zurückschwingt. Schritt für Schritt und anschaulich erklärt gibt es das ganze wieder im verlinkten Video. Viel Spaß dabei!

Bei Fragen könnt ihr jederzeit gerne entweder hier oder auf YouTube einen Kommentar hinterlassen. Ich werde alle Kommentare wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte auch ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen und empfehlt mich gerne weiter. Vielen herzlichen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Statik: Gleichgewicht am Rahmen / Tragwerk

Herzlich Willkommen!

Ein erstes kleines Auslegungsbeispiel nehmen wir uns diesmal vor. Es handelt sich um ein Tragwerk, welches im Lager A maximal mit einer vorgegebenen Kraft belastet werden darf. Die Frage dabei ist, welche Kraft P darf dann am freien Ende des Tragwerks maximal angreifen.

Bestimme die maximale Kraft P, die auf das Tragwerk aufgebracht werden darf, sodass die Resultierende in A maximal Fmax beträgt.

Geg.: Fmax=2kN, l=0.75m, h=0.5m, r=0.1m

Quelle: Aufgabe 6.74 (S. 351) aus Russell C. Hibbeler, Technische Mechanik 1 Statik, 12. Auflage, 2012 Pearson GmbH, München

Wie immer beginnen wir mit einem Freikörperbild, wobei wir hier das Seil nur am horizontalen Stück (links der Rolle) schneiden dürfen. Das macht die Rechnung etwas einfacher. Danach stellen wir Kräfte- und Momentengleichgewicht auf und lösen das entstehende Gleichungssystem. Nachdem in A ein Betrag als Maximalwert vorgegeben ist, wir aber je eine Kraft vertikal und horizontal erhalten, müssen wir noch mittels Pythagoras einen Betrag ermitteln. Schließlich lässt sich eine Gleichung für den maximalen Wert von P finden. Die genaue Rechnung, wie immer gespickt mit einigen Hinweisen und zusätzlichen Erklärungen findet ihr im verlinkten Video. Viel Spaß!


Wenn Fragen oder Unklarheiten auftauchen, freue ich mich jederzeit auf eure Kommentare – entweder hier oder direkt auf YouTube.

Bis bald,
Markus

Statik: Gleichgewicht am Gerberträger

Herzlich Willkommen!

Wir sehen uns heute an was eigentlich ein Gerberträger ist und wie wir dessen Lagerreaktionen bestimmen können.

Der zusammengesetzte Balken ist in C gelenkig gelagert und wird in A und B jeweils von einem Rollenlager gehalten. In D ist ein Scharniergelenk angebracht. Bestimme die Lagerkräfte unter Vernachlässigung der Dicke des Balkens.

Geg.: F1=4kN, F2=8kN, F3=12kN, M=15kNm, l=2m, α=30°, tanβ=4/3

Quelle: Aufgabe 6.73 (S. 351) aus Russell C. Hibbeler, Technische Mechanik 1 Statik, 12. Auflage, 2012 Pearson GmbH, München

Beim Gerberträger kommt es darauf an, dass wir ein im Grunde statisch unbestimmtes System durch zerlegen im Gerbergelenk zu einem statisch bestimmten System machen können. Wir erhalten dadurch im vorliegenden Beispiel zwei Teilsysteme. Für beide Teilsysteme können wir unsere Gleichgewichtsbedingungen (Momenten-, und Kräftegleichgewicht) separat anschreiben und erhalten damit sechs Gleichungen für insgesamt sechs Unbekannte (vier Lagerreaktionen und zwei Gelenkskräfte). Damit lässt sich das System schlussendlich vollständig berechnen. Wichtig hierbei ist, dass die Gelenkskräfte innere Kräfte sind und sich beim Zusammensetzen des Trägers wieder aufheben müssen. Daher müssen Sie an den beiden Teilsystemen in jeweils entgegengesetzte Richtung zeigen. Alle Details zur Rechnung und viele weitere Anmerkungen erfahrt ihr wieder im verlinkten Video. Viel Spaß damit!


Wenn Fragen oder Unklarheiten auftauchen, freue ich mich jederzeit auf eure Kommentare – entweder hier oder direkt auf YouTube.

Bis bald,
Markus

Statik in 3D: Mittels Seil abgespannter Mast

Herzlich Willkommen!

Hast du dich auch schon einmal gefragt wozu wir Vektoren in der Mechanik brauchen? Wieso schreiben wir Kräfte als Vektoren an, wenn wir doch auch Komponentenweise arbeiten können? Ist es dann überhaupt sinnvoll mit Vektoren zu arbeiten? Diese und weitere Fragen werde ich in diesem Beispiel versuchen zu beantworten.

Es geht um folgendes dreidimensionales Statikproblem:

Ein Mast wird von zwei Seilen BC und BD gehalten. Am Punkt B greifen die Kräfte F1 und F2 an. Bestimme unter der Voraussetzung, dass der Mast von einem Kugelgelenk am Fuß gehalten wird, die Komponenten der Lagerkraft in A. Die Kräfte F1 und F2 liegen in einer horizontalen Ebene.

Geg.: F1=140kN, F2=75kN, a=10m, b=5m, c=15m, α=30°

Quelle: Aufgabe 5.89 (S. 296) aus Russell C. Hibbeler, Technische Mechanik 1 Statik, 12. Auflage, 2012 Pearson GmbH, München

Wie fast immer, beginnen wir auch hier mit einem Freikörperbild um einen Überblick über die am Mast angreifenden Kräfte zu bekommen. Dann schreiben wir die Koordinaten der Punkte B, C und D an und können damit sehr einfach die Ortsvektoren und mit deren Betrag auch die Einheitsvektoren entlang der Seile aufstellen. In einem abschließenden Schritt können dann alle Kraftvektoren angeschrieben werden.
Da wir uns in der Statik befinden, müssen natürlich die Kraft- und Momentensummen verschwinden. Das gilt selbstverständlich auch für die vektoriellen Summen. Hier muss sich der Nullvektor ergeben. Wir können also alle drei Kraftrichtungen in eine vektorielle Bilanz zusammenfassen. Analoges gilt für die Momentenbilanz. Die einzelnen Momente berechnen wir dann natürlich mit dem Kreuzprodukt zwischen Abstandsvektoren und Kraftvektoren. Damit bekommen wir am Ende ein System aus fünf unabhängigen Gleichungen, welches wir auflösen und die fünf Unbekannten bestimmen können. Wir finden außerdem heraus, dass es sich beim Mast um einen sogenannten Zweikraftstab handelt. Alle Details gibt es wie gewohnt im verlinkten Video. Viel Spaß beim Nachvollziehen der einzelnen Schritte.


Wenn Fragen oder Unklarheiten auftauchen, freue ich mich jederzeit auf eure Kommentare – entweder hier oder direkt auf YouTube.

Bis bald,
Markus

Exzentrischer Stoß zweier quadratischer Scheiben

Herzlich Willkommen!

Diesmal sehen wir uns einen exzentrischen aber ebenen Stoß zweier quadratischer Scheiben an und überlegen uns, wie ein effizienter Rechenweg für ein solches Problem aussehen kann.

Zwei quadratische Scheiben bewegen sich nicht rotierend und reibungsfrei in der xy-Ebene so aufeinander zu, dass sie genau in den Eckpunkten B1 und B2 zusammenstoßen, wobei die Stoßnormale n=ex sein soll. Die Stoßziffer sei ε. Zusätzlich gegeben sind die eingezeichneten Geschwindigkeiten v1,v2,φ˙1,φ˙2 unmittelbar vor dem Stoß, sowie die Massen der Scheiben m1 und m2.

Ges.:
*Die translatorischen Geschwindigkeiten der Scheibenschwerpunkte v′S1, v′S2, sowie die Winkelgeschwindigkeiten φ˙′1, φ˙′2 der Scheiben unmittelbar nach dem Stoß.

Quelle: Aufgabe 2 (S. 320f.) aus S. Kessel, Technische Mechanik Aufgabensammlung mit Musterlösungen, 2000 Universität Dortmund

Die Angabe gibt es wie gewohnt zum Download. Somit könnt ihr das Beispiel zuerst selbst rechnen und dann mit der Musterlösung vergleichen.

In diesem Problem bewegen sich beide Scheiben vor dem Stoß rein translatorisch aufeinander zu. Nachdem sie aber im Punkt B – also exzentrisch – Stoßen, werde nach dem Stoßvorgang beide Scheiben eine Winkelgeschwindigkeit aufweisen. Außerdem ist zu berücksichtigen, dass wir die Vorzeichen der Geschwindigkeiten und Stoßantriebe korrekt übernehmen. Ich rate in diesem Fall immer dazu zuerst die Geschwindigkeiten positiv anzusetzen und erst nachträglich das tatsächliche Vorzeichen in die Gleichungen einzusetzen. Dadurch passieren meiner Erfahrung nach wesentlich weniger Vorzeichenfehler. Als grundlegende Gleichungen verwenden wir in diesem Problem die Impuls- und Drehimpulssätze der beiden Scheiben, sowie die Stoßhypothese in Kombination mit ebener Kinematik. Die Kinematik ist notwendig, da wir die Stoßhypothese bekanntlich im Stoßpunkt – also hier in B – ansetzen müssen. Die Geschwindigkeit im Punkt B nach dem Stoß ist allerdings durch die Drehbewegung eine andere als im Schwerpunkt. Hier also bitte um besondere Vorsicht. Ich schlage vor ihr seht euch wie gewohnt das verlinkte Video an. Viel Spaß damit!

Bei Fragen könnt ihr jederzeit gerne entweder hier oder auf YouTube einen Kommentar hinterlassen. Ich werde alle Kommentare wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte auch ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen und empfehlt mich gerne weiter. Vielen herzlichen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Stoß: Stabkette trifft auf Anschlag

Herzlich Willkommen!

Im aktuellen Stoßproblem geht es um eine Stabkette aus zwei Stäben, deren oberer Stab beim Stoßvorgang von einem Anschlag gefangen wird. Dadurch wird seine gesamte Energie vom Anschlag aufgenommen, d.h. dissipiert.

Eine aus zwei gleichen, homogenen Stäben bestehende Stabkette trifft in gestreckter Lage mit der Winkelgeschwindigkeit ω auf einen Anschlag B. Nach dem vollkommen plastischen Stoß bleibt der Stab 1 in Ruhe, was für den Stab 2 eine plötzliche Fixierung der Achse 0 bedeutet.

Geg.:
*Abmessungen l, λl
*Masse m der homogenen, dünnen Stäbe
*Winkelgeschwindigkeit ω unmittelbar vor dem Stoß.

Ges.:
*Winkelgeschwindigkeit ω′ des Stabes 2 unmittelbar nach dem Stoß.
*Stoßantrieb SA im Lager A
*Welchen Wert muss λ haben, damit das Lager A stoßfrei bleibt (SA=0)?
*Energieverlust beim Stoß

Quelle: Aufgabe 4.6.5 (S. 49) aus P. Lugner et al., Technische Mechanik, 1992 Springer-Verlag, Wien

Die Angabe gibt es wie gewohnt als Download inkl. Endergebnissen. Ihr könnt damit das Beispiel zuerst selbst rechnen und dann mit meiner Musterlösung vergleichen.

Wir können dieses Problem auf zwei Arten berechnen. Einerseits können wir die Stabkette als ganzes betrachten und andererseits können wir die beiden Stäbe im Gelenk trennen und als getrennte Systeme ansehen. Ich habe mich hier für die zweitere Variante entschieden, weil ich denke, dass diese einfacher nachvollziehbar ist.
Probiert aber natürlich gerne auch die erste Variante aus und überprüft ob die Ergebnisse übereinstimmen. Wichtig ist, dass der obere Stab dann als masselos angenommen werden muss, da ja seine gesamte Rotationsenergie dissipiert wird.
In der getrennten Variante stellen wir einfach Impuls- und Drehimpulssätze für die beiden Stäbe auf. Dabei ist zu beachten, dass sich der Drehpunkt während des Stoßvorgangs ändert. Vor dem Stoß liegt der Drehpunkt im Lager A, nach dem Stoß im Punkt 0. Das ist natürlich relevant für die Kinematik im System. Am besten ihr seht euch wie gewohnt das verlinkte Video an um die ausführliche Erklärung zu erhalten. Viel Spaß damit!

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Stoß zweier Quader inkl. Reibung

Herzlich Willkommen!

Wir wollen uns diesmal einen Stoß zweier Quader ansehen. Bevor jedoch der Stoß passiert wird einer der beiden Quader von einer Feder angestoßen und rutscht reibungsbehaftet eine schiefe Ebene hinab. Nach dem Stoßvorgang rutschen beide Quader reibungsbehaftet weiter bis sie zum Stillstand kommen.

Der Quader A mit der Masse mA wird von einer um den Federweg x vorgespannten Feder mit Federkonstante c abgestoßen und rutscht über eine raue schiefe Ebene mit Steigungswinkel α auf eine raue horizontale Bahn mit Reibungskoeffizient μ für beide Flächen. Dort stößt der Quader A auf einen ruhenden Quader B mit der Masse mB, wobei die Stoßzahl ε beträgt.

Geg.:
mA=100kg, mB=50kg, c=4000N/m, x=0.3m, α=20°, μ=0.2, s1=10m, s2=3m, ε=0.6

Ges.:
*Geschwindigkeit beider Quader unmittelbar nach dem Stoß.
*Entfernung von der Stoßstelle in der die beiden Quader zur Ruhe kommen.

Quelle: Aufgabe D27 (S. 339f.) aus J. Berger, Klausurentrainer Technische Mechanik, 2. Auflage, 2008 Vieweg+Teubner, Wiesbaden

Die Angabe gibt es natürlich auch als Download inkl. Endergebnissen. Ihr könnt damit das Beispiel zuerst selbst rechnen und dann mit meiner Musterlösung vergleichen.

Bevor der Stoßvorgang selbst berechnet werden kann, müssen wir uns einerseits der Energieerhaltung (Federvorspannung) und andererseits dem Arbeitssatz (rutschen auf der reibungsbehafteten Fläche) bedienen. Der Stoßvorgang selbst kann entweder mittels innerem Stoßantrieb (Zerlegung des Vorgangs in zwei einzelne Quader) oder für das Gesamtsystem berechnet werden. Wir sehen uns hier beide Möglichkeiten an und vergleichen diese. Nach dem Stoßvorgang nutzen wir abermals den Arbeitssatz um die Strecken zu berechnen, welche die beiden Quader bis zum Stillstand weiterrutschen. Die Details gibt es wie immer im Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Statik: Kippen einer Scheibtruhe beim Hochheben

Herzlich Willkommen!

Heute sehen wir uns das vielleicht kürzeste jemals aufgenommene Mechanik-Beispiel an. 😉
Wir wollen bestimmen wie weit eine Scheibtruhe gekippt werden kann, bevor sie umkippt.

Die Scheibtruhe mit Inhalt hat die Masse m und den Schwerpunkt S. Bestimme den größten Neigungswinkel θ, bei dem die Scheibtruhe gerade noch nicht umkippt.

Quelle: Aufgabe 5.58 (S. 289) aus Russell C. Hibbeler, Technische Mechanik 1 Statik, 12. Auflage, 2012 Pearson GmbH, München

Es geht dabei zwar schon um das Anfertigen eines Freikörperbildes, im Endeffekt aber nur um geometrische Überlegungen anhand dieses Bildes. Daher will ich auch heute gar nicht mehr verraten, sondern auf das verlinkte Video verweisen. Dort wird – in nicht einmal 5 Minuten – hoffentlich alles klar werden. Viel Spaß damit!


Bei Fragen oder Unklarheiten freue ich mich auf eure Kommentare.

Bis bald,
Markus

Gleichgewicht: Kran hebt eine Last

Herzlich Willkommen!

Auch in diesem Beispiel geht es wieder um Statik, nämlich um die Fragestellung welche Last ein Kran maximal heben kann ohne selbst umzukippen.

Der skizzierte Kran besteht aus drei Teilen mit den Gewichtskräften G1, G2, G3 und den Schwerpunkten S1, S2, S3.

Bestimme unter Vernachlässigung des Gewichtes des Auslegers
(a) die Lagerkräfte auf jeden der vier Reifen, wenn die Last mit konstanter Geschwindigkeit gehoben wird und ein Gewichtskraft G hat.
(b) die maximale Last, die der Kran mit dem Ausleger in der dargestellten Position heben kann, ohne dass er umkippt.

Geg.: G=3200N, G1=14000N, G2=3600N, G3=6000N, a=2.5m, b=0.75m, c=2m, d=1.5m, e=0.25m

Quelle: Aufgabe 5.47 (S. 287) aus Russell C. Hibbeler, Technische Mechanik 1 Statik, 12. Auflage, 2012 Pearson GmbH, München

Den Start macht wieder ein möglichst einfaches Freikörperbild, welches aber das Problem ausreichend exakt beschreibt. Daraus lassen sich dann die Gleichgewichtsbedingungen (Momenten- und Kräftegleichgewicht) aufstellen. Wir bestimmen daraus die Normalkräfte auf die Reifen des Krans und können schließlich diese Gleichungen auch nutzen um die maximale Last zu bestimmen, die der Kran heben kann ohne zu kippen. Wie gewohnt gibt es die zugehörige Schritt für Schritt Anleitung im verlinkten Video.


Bei Fragen oder Unklarheiten kommentiert bitte gerne hier oder direkt auf YouTube. Über einen Daumen hoch und ein Abo auf YouTube freue ich mich natürlich ebenfalls. Vielen Dank für eure Unterstützung!

Bis bald,
Markus