Exzentrischer Stoß zweier quadratischer Scheiben

Herzlich Willkommen!

Diesmal sehen wir uns einen exzentrischen aber ebenen Stoß zweier quadratischer Scheiben an und überlegen uns, wie ein effizienter Rechenweg für ein solches Problem aussehen kann.

Zwei quadratische Scheiben bewegen sich nicht rotierend und reibungsfrei in der xy-Ebene so aufeinander zu, dass sie genau in den Eckpunkten B1 und B2 zusammenstoßen, wobei die Stoßnormale n=ex sein soll. Die Stoßziffer sei ε. Zusätzlich gegeben sind die eingezeichneten Geschwindigkeiten v1,v2,φ˙1,φ˙2 unmittelbar vor dem Stoß, sowie die Massen der Scheiben m1 und m2.

Ges.:
*Die translatorischen Geschwindigkeiten der Scheibenschwerpunkte v′S1, v′S2, sowie die Winkelgeschwindigkeiten φ˙′1, φ˙′2 der Scheiben unmittelbar nach dem Stoß.

Quelle: Aufgabe 2 (S. 320f.) aus S. Kessel, Technische Mechanik Aufgabensammlung mit Musterlösungen, 2000 Universität Dortmund

Die Angabe gibt es wie gewohnt zum Download. Somit könnt ihr das Beispiel zuerst selbst rechnen und dann mit der Musterlösung vergleichen.

In diesem Problem bewegen sich beide Scheiben vor dem Stoß rein translatorisch aufeinander zu. Nachdem sie aber im Punkt B – also exzentrisch – Stoßen, werde nach dem Stoßvorgang beide Scheiben eine Winkelgeschwindigkeit aufweisen. Außerdem ist zu berücksichtigen, dass wir die Vorzeichen der Geschwindigkeiten und Stoßantriebe korrekt übernehmen. Ich rate in diesem Fall immer dazu zuerst die Geschwindigkeiten positiv anzusetzen und erst nachträglich das tatsächliche Vorzeichen in die Gleichungen einzusetzen. Dadurch passieren meiner Erfahrung nach wesentlich weniger Vorzeichenfehler. Als grundlegende Gleichungen verwenden wir in diesem Problem die Impuls- und Drehimpulssätze der beiden Scheiben, sowie die Stoßhypothese in Kombination mit ebener Kinematik. Die Kinematik ist notwendig, da wir die Stoßhypothese bekanntlich im Stoßpunkt – also hier in B – ansetzen müssen. Die Geschwindigkeit im Punkt B nach dem Stoß ist allerdings durch die Drehbewegung eine andere als im Schwerpunkt. Hier also bitte um besondere Vorsicht. Ich schlage vor ihr seht euch wie gewohnt das verlinkte Video an. Viel Spaß damit!

Bei Fragen könnt ihr jederzeit gerne entweder hier oder auf YouTube einen Kommentar hinterlassen. Ich werde alle Kommentare wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte auch ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen und empfehlt mich gerne weiter. Vielen herzlichen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Arbeitssatz: Schwingungsfähiges System aus Scheiben und Federn

Herzlich Willkommen!

Hier ist das erste Beispiel zum Arbeits- bzw. Energiesatz. Es lautet folgendermaßen:

Gegeben ist ein schwingungsfähiges System, bestehend aus zwei gleichen Scheiben (Masse m, Massenträgheitsmoment IS um die Drehachse durch den Schwerpunkt, Radius r). Es tritt kein Gleiten zwischen den Scheiben und dem idealen, undehnbaren Seil auf, Lagerungen reibungsfrei. Eine lineare Feder mit Federkonstante k, eine Drehfeder mit Federkonstante cT.

Ges.:
*die Bewegungsgleichung des Systems mit Hilfe des Energiesatzes.
*die Schwingungsdauer des Systems.

Die Angabe gibt es wie üblich hier zum Download.

In diesem Beispiel sollten wir uns zuerst Gedanken über die Kinematik machen. Dadurch verknüpfen wir die Bewegungskoordinate x mit den Rotationen der Rollen und damit auch dem Weg der Drehfeder oben. Außerdem hilft uns eine Betrachtung des Momentanpols der unteren Rolle. Danach lassen sich die kinetische und potentielle Energie sehr einfach hinschreiben. Die Idee des Energiesatzes ist es dann, dass die Energie erhalten bleibt und damit deren zeitliche Ableitung verschwinden muss. Aus diesem Zusammenhang lässt sich die Bewegungsgleichung des Systems bestimmen. Diese ist schon in der Normalform, weshalb wir dann auch die Periodendauer einfach ablesen können. Schritt für Schritt erkläre ich den gesamten Rechenweg wieder im verlinkten Video. Viel Spaß dabei!

Sollten Fragen auftauchen oder ihr Anmerkungen haben, dann zögert bitte nicht mir hier oder auf YouTube einen Kommentar zu hinterlassen. Ich freue mich auf eure Rückmeldungen.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte unbedingt ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal! Ihr helft mir damit enorm. Vielen Dank!

Viel Spaß mit dem Beispiel und bis bald,
Markus

Lagrange: Kreisscheibe mit Klotz, Pendel und Drehfeder

Herzlich Willkommen!

Wir sehen uns diesmal ein System aus Klotz, Kreisscheibe und Pendel an. Das Pendel ist zudem an seinem Aufhängepunkt mit einer Drehfeder beaufschlagt.

Auf eine in O drehbar gelagerte Kreisscheibe (Radius L, Masse m) ist ein Faden gewickelt, der im Punkt B mit einer Masse m verbunden ist. In A ist eine Stange (Länge 2L, Masse m) über eine Drehfeder (Federkonstante k, in der Lage φ=0, ψ=0 entspannt) mit der Kreisscheibe gelenkig verbunden.

Ges.:
*Lagrange-Funktion des Systems.
*Bewegungsgleichungen in den Koordinaten φ und ψ.

Quelle: Aufgabe 4 (S. 242) aus S. Kessel, Technische Mechanik – Aufgabensammlung mit Musterlösungen, 2000, Dortmund

Die Angabe gibt es wie gewohnt zum Download.

Wie üblich stellen wir zuerst die relevanten Schwerpunktskoordinaten als Funktion unserer generalisierten Koordinaten auf. Daraus lassen sich dann die Geschwindigkeiten durch einfache Zeitableitung bestimmen. Über kinetische und potentielle Energie wird im Anschluss die Lagrangefunktion des Systems ermittelt. Schließlich nutzen wir zur Bestimmung der Bewegungsgleichungen die Euler-Lagrange Gleichung und erhalten zwei gekoppelte Bewegungsgleichungen in den generalisierten Koordinaten. Als wichtigen Punkt diskutieren wir am Ende des Beispiels noch die Bedeutung der Kopplung für die Dynamik des Systems. Ausführlich und mit beliebigen Zwischenstopps lässt sich das alles wieder im verlinkten Video nachvollziehen.

Sollten Fragen auftauchen oder ihr Anmerkungen haben, dann zögert bitte nicht mir hier oder auf YouTube einen Kommentar zu hinterlassen. Ich freue mich auf eure Rückmeldungen.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte unbedingt ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal! Ihr helft mir damit enorm. Vielen Dank!

Viel Spaß mit dem Beispiel und bis bald,
Markus

Stoß: Stabkette trifft auf Anschlag

Herzlich Willkommen!

Im aktuellen Stoßproblem geht es um eine Stabkette aus zwei Stäben, deren oberer Stab beim Stoßvorgang von einem Anschlag gefangen wird. Dadurch wird seine gesamte Energie vom Anschlag aufgenommen, d.h. dissipiert.

Eine aus zwei gleichen, homogenen Stäben bestehende Stabkette trifft in gestreckter Lage mit der Winkelgeschwindigkeit ω auf einen Anschlag B. Nach dem vollkommen plastischen Stoß bleibt der Stab 1 in Ruhe, was für den Stab 2 eine plötzliche Fixierung der Achse 0 bedeutet.

Geg.:
*Abmessungen l, λl
*Masse m der homogenen, dünnen Stäbe
*Winkelgeschwindigkeit ω unmittelbar vor dem Stoß.

Ges.:
*Winkelgeschwindigkeit ω′ des Stabes 2 unmittelbar nach dem Stoß.
*Stoßantrieb SA im Lager A
*Welchen Wert muss λ haben, damit das Lager A stoßfrei bleibt (SA=0)?
*Energieverlust beim Stoß

Quelle: Aufgabe 4.6.5 (S. 49) aus P. Lugner et al., Technische Mechanik, 1992 Springer-Verlag, Wien

Die Angabe gibt es wie gewohnt als Download inkl. Endergebnissen. Ihr könnt damit das Beispiel zuerst selbst rechnen und dann mit meiner Musterlösung vergleichen.

Wir können dieses Problem auf zwei Arten berechnen. Einerseits können wir die Stabkette als ganzes betrachten und andererseits können wir die beiden Stäbe im Gelenk trennen und als getrennte Systeme ansehen. Ich habe mich hier für die zweitere Variante entschieden, weil ich denke, dass diese einfacher nachvollziehbar ist.
Probiert aber natürlich gerne auch die erste Variante aus und überprüft ob die Ergebnisse übereinstimmen. Wichtig ist, dass der obere Stab dann als masselos angenommen werden muss, da ja seine gesamte Rotationsenergie dissipiert wird.
In der getrennten Variante stellen wir einfach Impuls- und Drehimpulssätze für die beiden Stäbe auf. Dabei ist zu beachten, dass sich der Drehpunkt während des Stoßvorgangs ändert. Vor dem Stoß liegt der Drehpunkt im Lager A, nach dem Stoß im Punkt 0. Das ist natürlich relevant für die Kinematik im System. Am besten ihr seht euch wie gewohnt das verlinkte Video an um die ausführliche Erklärung zu erhalten. Viel Spaß damit!

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Stoß zweier Quader inkl. Reibung

Herzlich Willkommen!

Wir wollen uns diesmal einen Stoß zweier Quader ansehen. Bevor jedoch der Stoß passiert wird einer der beiden Quader von einer Feder angestoßen und rutscht reibungsbehaftet eine schiefe Ebene hinab. Nach dem Stoßvorgang rutschen beide Quader reibungsbehaftet weiter bis sie zum Stillstand kommen.

Der Quader A mit der Masse mA wird von einer um den Federweg x vorgespannten Feder mit Federkonstante c abgestoßen und rutscht über eine raue schiefe Ebene mit Steigungswinkel α auf eine raue horizontale Bahn mit Reibungskoeffizient μ für beide Flächen. Dort stößt der Quader A auf einen ruhenden Quader B mit der Masse mB, wobei die Stoßzahl ε beträgt.

Geg.:
mA=100kg, mB=50kg, c=4000N/m, x=0.3m, α=20°, μ=0.2, s1=10m, s2=3m, ε=0.6

Ges.:
*Geschwindigkeit beider Quader unmittelbar nach dem Stoß.
*Entfernung von der Stoßstelle in der die beiden Quader zur Ruhe kommen.

Quelle: Aufgabe D27 (S. 339f.) aus J. Berger, Klausurentrainer Technische Mechanik, 2. Auflage, 2008 Vieweg+Teubner, Wiesbaden

Die Angabe gibt es natürlich auch als Download inkl. Endergebnissen. Ihr könnt damit das Beispiel zuerst selbst rechnen und dann mit meiner Musterlösung vergleichen.

Bevor der Stoßvorgang selbst berechnet werden kann, müssen wir uns einerseits der Energieerhaltung (Federvorspannung) und andererseits dem Arbeitssatz (rutschen auf der reibungsbehafteten Fläche) bedienen. Der Stoßvorgang selbst kann entweder mittels innerem Stoßantrieb (Zerlegung des Vorgangs in zwei einzelne Quader) oder für das Gesamtsystem berechnet werden. Wir sehen uns hier beide Möglichkeiten an und vergleichen diese. Nach dem Stoßvorgang nutzen wir abermals den Arbeitssatz um die Strecken zu berechnen, welche die beiden Quader bis zum Stillstand weiterrutschen. Die Details gibt es wie immer im Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Relativkinetik: Masse in rotierendem Rohr

Herzlich Willkommen!

Ein absoluter Klassiker der Relativkinetik ist eine Masse die sich reibungsfrei in einem rotierenden Rohr bewegen kann. Genau das wollen wir uns hier ansehen.

Ein Teilchen P mit der Masse m kann sich reibungsfrei in einem um die z-Achse drehbaren Rohr der Länge l bewegen. Das Rohr rotiert mit der Winkelgeschwindigkeit Ω, die Winkelbeschleunigung beträgt Ω˙. Für die Anfangsbedingungen r(0)=r0 größer 0 und r˙(0)=0 sind die untenstehende Größen zu berechnen.

*Ortsvektor r_P(t)
*Relativgeschwindigkeit v_R, Führungsgeschwindigkeit v_F und Absolutgeschwindigkeit v_P
*Relativbeschleunigung a_R, Führungsbeschleunigung a_F, Coriolisbeschleunigung a_C und Absolutbeschleunigung a_P.
*Kräfte auf die Masse *Abstand r(t) von der Drehachse für den Spezialfall Ω=const.

Hinweis: Alle Vektoren sind im mitrotierenden ξ,η,ζ System darzustellen.

Und wie immer die Angabe zum Download:

Zum Ablaufplan der Rechnung ist hier eigentlich nicht viel zu sagen. Die Punkte (a) – (e) in der Angabe stellen nämlich bereits einen guten Ablaufplan zur Verfügung. Wir halten uns einfach daran und können auf direktem Wege alles berechnen. Natürlich könnt ihr den Rechenweg wieder Schritt für Schritt im verlinkten Video nachverfolgen. Viel Spaß damit!

Bei Fragen oder Anmerkungen zu Beispiel oder Rechenweg bitte einfach hier oder auf YouTube einen Kommentar hinterlassen. Ich freue mich auf eure Rückmeldungen.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis demnächst,
Markus

Kreisel: Rotierender Stab mit Drehfeder

Herzlich Willkommen!

Das letzte Beispiel zur Kreiseldynamik ist schon eine ganze Weile her, deshalb wollen wir uns heute wieder einmal ein solches ansehen.

Ein zylindrischer, homogener Stab (kein dünner Stab) ist in einer rotierenden Gabel reibungsfrei drehbar gelagert und über eine Drehfeder mit dieser verbunden.

Geg.:
homogener Stab: Länge l, Durchmesser 2r, Masse m
lineare Drehfeder: Drehfederkonstante cT, vollkommen entspannt bei ϕ=0
Gabel: Winkelgeschwindigkeit Ω, die durch ein entsprechendes Antriebsmoment MA konstant gehalten wird.

Ges.:
*Wie groß darf Ω höchstens sein, damit der Stab für kleine Winkel ϕ eine Schwingung ausführt?
*Welchen Wert muss das Antriebsmoment MA(ϕ) bei reibungsfreier Lagerung der Gabel annehmen. Anfangsbedingung: ϕ=0, ϕ˙=ν

Hinweis: Verwenden Sie die Euler’schen Kreiselgleichungen.

Quelle: Aufgabe 4.4.4 (S. 42) aus P. Lugner et al., Technische Mechanik, 1992 Springer-Verlag, Wien

Die Angabe zum Download gibt es wie gewohnt ihr hier:

Wie immer ist es wichtig sich anhand einer Skizze, d.h. eines Freikörperbilds bewusst zu machen, welche Kräfte und Momente sowie Geschwindigkeiten und Beschleunigungen im System wirken. Dann können wir hier auch schon die Euler’schen Kreiselgleichungen anschreiben, deren einzelne Terme bestimmen und in die allgemeine Form der Gleichungen einsetzen. Dadurch gelangen wir zu einem Gleichungssystem aus dem wir eine Bewegungsgleichung erhalten. Am Ende müssen wir uns noch darüber Gedanken machen, wann es sich bei dieser Bewegungsgleichung um eine Schwingungsgleichung handelt. All das besprechen wir wieder in voller Schönheit im verlinkten Video.

Sämtliche Fragen beantworte ich wie immer sehr gerne – schreibt sie mir bitte einfach hier oder auf YouTube als Kommentar.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald,
Markus

Lagrange: Schwingender Halbzylinder

Herzlich Willkommen!

Heute geht es in der Lagrange-Mechanik einmal nicht um eine Pendelschwingung, sondern um das Schwingen eines Halbzylinders auf einer festen Unterlage.

Ein Halbzylinder (Masse m, Radius r) wird aus seiner Ruhelage ausgelenkt. Der Schwerpunkt S liegt in einem Abstand von 4r/3π vom Mittelpunkt des Halbkreises entfernt.

Ges.:
*die Bewegungsgleichung des Systems mit Hilfe der Lagrange Gleichungen.
*die linearisierten Bewegungsgleichung und die Schwingungsdauer des Systems.

Die Angabe könnt ihr wie immer hier herunterladen.

In diesem Beispiel sollten wir uns beim Aufstellen der generalisierten Koordinaten ein wenig mehr Zeit nehmen als üblich. Es gibt nämlich eine Kleinigkeit die schnell zu übersehen ist, aber eine fatale Auswirkung auf das Ergebnis hätte. Sind die generalisierten Koordinaten einmal korrekt aufgestellt, kann nicht mehr viel passieren. Wir leiten dann daraus die generalisierten Geschwindigkeiten ab, berechnen kinetische und potentielle Energie und erhalten die Lagrangefunktion. Damit wiederum können wir unsere Bewegungsgleichung berechnen. Am Ende linearisieren wir die Bewegungsgleichung und ermitteln Eigenkreisfrequenz und Periodendauer. Die Details dazu könnt ihr euch im verlinkten Video ansehen.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Viel Spaß mit diesem Beispiel und bis bald,
Markus

Relativkinetik: Masse an Federn in rotierender Scheibe

Herzlich Willkommen!

Heute sehen wir uns eine Masse an, die an beiden Enden mit Federn in der Nut einer rotierenden Scheibe befestigt ist und durch die Drehbewegung der Scheibe schwingt.

In der glatten Nut einer Scheibe, die sich mit der Winkelgeschwindigkeit ω=const. dreht, ist eine Masse m an Federn (Federkonstante c ) befestigt.

Ges.:
*Bewegungsgleichung im bewegten ξ – η System.
*Kraft von der Nut auf die Masse
*Welche Eigenfrequenz stellt sich für die Bewegung der Masse ein?
*Winkelgeschwindigkeit ωcrit, bei der die Masse m mit der Scheibe rotiert, ohne in der Nut hin- und her zu schwingen.

Und wie immer die Angabe zum Download:

Den Anfang macht auch hier ein Freikörperbild um die Geometrie und damit die Beschleunigung sowie die Kräfte auf die Masse definieren zu können. All diese Größen können wir dann mittels relativkinetischen Gleichungen und Schwerpunktsatz berechnen. Die Schritte im Detail, besprechen wir natürlich wieder ausführlich im verlinkten Video.

Bei Fragen oder Anmerkungen zu Beispiel oder Rechenweg bitte einfach hier oder auf YouTube einen Kommentar hinterlassen. Ich freue mich auf eure Rückmeldungen.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis demnächst,
Markus

Lagrange: Block mit Pendel auf schiefer Ebene

Herzlich Willkommen!

Diesmal geht es um ein System aus einem Block und einem mathematischen Pendel. Das Pendel schwingt um den Schwerpunkt des Blocks, während der Block eine schiefe Ebene entlang gleitet.

Ein Block der Masse M gleite reibungsfrei unter dem Einfluss der Schwerkraft auf einer schiefen Ebene mit Neigungswinkel α gegen die Horizontale. An seinem Schwerpunkt sei die Masse m über einen masselosen Faden der Länge l befestigt.

Ges.:
*Wie lautet die Lagrange-Funktion des Systems sowie dessen Bewegungsgleichungen bzgl. s und φ?
*Errechnen Sie eine geschlossene Differentialgleichung für φ(t).
*Geben Sie die Eigenfrequenz ω der Schwingung für M sehr viel größer als m und kleine Winkelausschläge (φ ~ α) an und zeigen Sie, dass φ(t)=α+φsin(ωt+δ) eine gültige Lösung darstellt.

Hinweis: Zur Vereinfachung der Ergebnisse benötigen Sie die Additionstheoreme cos(α−β)=cosαcosβ+sinαsinβ
sin(α−β)=sinαcosβ−cosαsinβ

Quelle: Aufgabe 1.2.12 (S. 51) aus W. Nolting, Grundkurs Theoretische Physik 2, Analytische Mechanik, 2011, Springer, Berlin

Die Angabe gibt es wie gewohnt als Download inkl. Endergebnissen.

Wir stellen zuallererst wieder die relevanten Koordinaten von Block und Pendelmasse auf und drücken sie als Funktion der generalisierten Koordinate (s und Pendelwinkel) aus. Daraus lassen sich die Geschwindigkeiten bestimmen und anschließend beide Anteile zur Energie, kinetische und potentielle Energie, ermitteln. Dann lassen sich aus der Lagrangefunktion die Bewegungsgleichungen ableiten und eine geschlossene Differentialgleichung für den Pendelwinkel anschreiben. Schließlich können wir die geforderte Linearisierung durchführen. Wie immer gibt es die ausführliche Erklärung im verlinkten Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Viel Spaß mit diesem Beispiel und bis bald,
Markus