Lagrange: Dynamik eines hochgeworfenen Seils

Herzlich Willkommen!

Ein sehr interessantes – und oft in der analytischen Mechanik anzutreffendes – Beispiel ist jenes, das wir uns in diesem Beitrag genauer ansehen wollen.

Ein Seil der Länge l wird senkrecht in die Luft geworfen. Es sei voll beweglich, sodass der Knick frei über das Seil laufen kann. Die Seilmasse pro Längeneinheit sei ρ. Die Krümmung der Knickstelle ist als vernachlässigbar anzusehen, d.h. die relevante Bewegung findet nur in x-Richtung statt.

Ges.:
*Finde geeignete generalisierte Koordinaten und stelle die Lagrangefunktion des Systems auf.
*Leite die Bewegungsgleichungen der generalisierten Koordinaten her.
*Wie verhält sich die Geschwindigkeit der Knickstelle, wenn diese das Seilende erreicht?

Die Angabe gibt es wie üblich als Download, damit du dir das Beispiel in Ruhe selbst ansehen kannst.

Auch hier braucht es zu Beginn einen Ansatz für die generalisierten Koordinaten bzw. die Koordinaten der Schwerpunkte der beiden Teilstücke des Seils. Dabei hilft uns wieder eine Zwangsbedingung, nämlich jene konstanter Seillänge. Dann erhalten wir aus den Koordinaten durch Zeitableitung wieder die Geschwindigkeiten der Seilschwerpunkte. Vorsicht ist hier beim Aufstellen der Energien geboten. Nachdem die Knickstelle des Seils ja wandern soll, muss auch die Masse der Teilstücke sich verändern. Wir haben es also erstmals mit einer zeitabhängigen Masse in der kinetischen Energie zu tun. Diese lässt sich allerdings mit der gegebenen Seilmasse pro Längeneinheit relativ einfach aufstellen. Ähnlich gehen wir bei der potentiellen Energie vor, sodass wir schließlich die Lagrangefunktion anschreiben können. Im nächsten Schritt bestimmen wir die Bewegungsgleichungen der Seilenden und können daraus schließlich eine geschlossene Differentialgleichung bauen. Dann wollen wir aber auch noch wissen, wie sich die Geschwindigkeit der Knickstelle verhält. Durch kluge Substitution finden wir eine sehr einfache Differentialgleichung die sich mit ein wenig Aufwand lösen lässt. Schließlich erhalten wir eine sehr einfach Gleichung für die Geschwindigkeit der Knickstelle. Daran ist abzulesen was passiert, wenn wir ein Seilende erreichen. Allerdings möchte ich das hier noch nicht verraten, sondern die Spannung ein wenig aufrecht erhalten. Um das Phänomen zu erfahren das wir hier mathematisch abgeleitet haben, musst du dir schon das Video ansehen. Viel Spaß damit!

Unterstütze bitte meine Arbeit durch ein Like und eine Weiterempfehlung der Website und meines YouTube Kanals. Falls du es noch nicht getan hast, verhilfst du mir außerdem mit einem Abo zu mehr Sichtbarkeit. Vielen Dank vorab!

Viel Spaß mit diesem etwas aufwändigeren Beispiel und bis bald,
Markus

Unelastischer Stoß: Punktmasse bleibt in Quader stecken

Herzlich Willkommen!

Im Stoßbeispiel, dass wir uns für heute vornehmen möchten, geht es um ein physikalisches Pendel mit einer Pendelkugel. Diese Pendelkugel wird aus der Ruhe losgelassen und trifft am tiefsten Punkt an eine Wand. Der Stoßvorgang selbst hat dabei eine definierte Stoßziffer ε, ist also weder vollkommen elastisch noch vollkommen plastisch.

Eine Masse m2 stößt vollkommen unelastisch mit der Geschwindigkeit v2 gegen eine ruhende Masse m1, die an zwei gleichlangen, masselosen Pendelstützen aufgehängt ist und verbleibt in ihr. Aus dem Maximalausschlag φ=α soll auf die Geschwindigkeit v2 geschlossen werden, wobei die Wirkungslinie von v2 durch den Schwerpunkt von m1 geht.

Ges.:
*Geschwindigkeit der Massen nach dem Stoß.
*Zusammenhang zwischen dem Winkel α der Umkehrlage und v2
*Energieverlust während dem Stoß

Die Angabe gibt es wie gewohnt zum Download. Somit könnt ihr das Beispiel zuerst selbst rechnen und dann mit der Musterlösung vergleichen.

Zur Lösung dieses Beispiels verwenden wir für den Stoßvorgang selbst eine reine Impulsbilanz, die wir für das Gesamtsystem aufstellen. Nachdem es sich um einen zentrischen Stoß handelt, reicht uns diese Impulsbilanz aus um einen Zusammenhang zwischen der Geschwindigkeit unmittelbar nach dem Stoß mit jener unmittelbar vor dem Stoß herzustellen. Zur Ermittlung des gesuchten Zusammenhangs zwischen der Geschwindigkeit v2 der Punktmasse vor dem Stoß und dem Maximalausschlag der Gesamtmasse danach setzen wir anschließend eine Energieerhaltung an, weil der Schwingvorgang nach dem Stoß ohne Energieverlust passiert. Schließlich können wir den Energieverlust der während des Stoßvorgangs selbst auftritt mittels einer Energiebilanz zwischen den Zeitpunkten unmittelbar vor und unmittelbar nach dem Stoß berechnen. Die Details und weitere Anmerkungen zum Beispiel findet ihr wie immer im verlinkten Video. Viel Freude dabei!

Bei Fragen könnt ihr jederzeit gerne entweder hier oder auf YouTube einen Kommentar hinterlassen. Ich werde alle Kommentare wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte auch ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen und empfehlt mich gerne weiter. Vielen herzlichen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Relativkinetik: Person auf Platte & Rollen

Herzlich Willkommen!

Wir sehen uns in diesem Beitrag ein Beispiel zur Relativkinetik an, welches ein wenig unüblich ist. Warum, das werden wir im Verlauf des Beispiels klären.

Ein Mann der Masse m1 bewegt sich lt. Skizze mit konstanter Relativbeschleunigung arel auf einem Brett der Masse m2. Das Brett liegt auf zwei Rollen mit jeweils Radius r, Masse m3 und Massenträgheitsmoment J. Die Walzen stützen sich am Boden ab und rollen bei der Bewegung ohne zu rutschen.

Geg.: arel, m1, m2, m3, J, r

Bestimme:
*die Absolutgeschwindigkeit v2(t) des Brettes. Dabei gilt v2(t=0)=0.
*die Absolutgeschwindigkeit v1(t) des Mannes.

Quelle: Aufgabe D33 (S. 353f) aus J. Berger, Klausurentrainer Technische Mechanik, 2008, Vieweg+Teubner, Wiesbaden

Und wie immer die Angabe zum Download:

Die Andersartigkeit dieses Beispiels liegt daran, dass es sinnvoll ist Schwerpunkt- und Momentensätze als Ausgangspunkt für die Berechnung zu verwenden, ähnlich wie im Beispiel Block rutscht auf Keil. Sonst gehen wir ja in der Relativkinetik oft von den Geschwindigkeits- und Beschleunigungszusammenhängen aus und nutzen erst zum Schluss Schwerpunkt- und Momentenssätze. Wir machen uns zwar auch hier zu Beginn Gedanken über die Kinematik, aber diese fallen sehr einfach aus. Ausgangspunkt ist daher ein sauberes Freikörperbild in dem wir sämtliche Kräfte und dynamischen Größen notieren. Darauf aufbauend lassen sich dann alle Schwerpunkt- und Momentensätze für die Teile des Systems aufstellen. Damit können wir anschließend bereits die Beschleunigung für das Brett berechnen. Diese führt uns auf direktem Wege, durch Zeitintegration, zur Geschwindigkeit des Bretts und schließlich über die Kinematik zur Geschwindigkeit der Person am Brett. Alle Details gibt es natürlich wieder im verlinkten Video. Viel Spaß damit!

Bei Fragen oder Anmerkungen zu Beispiel oder Rechenweg bitte einfach hier oder auf YouTube einen Kommentar hinterlassen. Ich freue mich auf eure Rückmeldungen und beantworte gerne alle Fragen.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald,
Markus

Lagrange: Physikalisches Pendel an vertikaler Feder

Herzlich Willkommen!

Diesmal habe ich eine Variation eines schon gerechneten Lagrange-Beispiels für euch, nämlich ein physikalisches Einfachpendel an einer vertikalen Feder.

Ein homogenes Stabpendel der Masse M und der Länge 2L ist an seinem Drehpunkt vertikal federnd aufgehängt. Die Federkonstante beträgt c. Die Erdbeschleunigung wirkt vertikal nach unten und das System bewegt sich nur in der Blattebene.

Bestimme für dieses System:
*die kinetische Energie T und die potentielle Energie V sowie die Lagrange Funktion,
*die Bewegungsgleichungen,
*die linearisierte Form der Bewegungsgleichungen,
*die Bedingung für die Übereinstimmung der Eigenfrequenzen von Translations- und Rotationsschwingung.

Die Angabe gibt es wie gewohnt zum Download.

Wir benötigen zu Beginn wieder die Koordinaten und Geschwindigkeiten der Massepunkte im System um die Energien aufstellen zu können. Die Koordinaten des Aufhängepunktes sind, wie auch im Beispiel zum federnd aufgehängten Doppelpendel, nicht notwendig, obwohl sich dieser natürlich bewegt. Allerdings hat auch hier die Feder in dieser Idealisierung keine Masse und damit auch keine Energie und trägt damit auch nichts zur Lagrangefunktion bei. Damit können wir bereits kinetische und potentielle Energie des Systems, sowie die Lagrangefunktion hinschreiben. Über die wohlbekannten Euler-Lagrange-Gleichungen erhalten wir zwei gekoppelte Bewegungsgleichungen. Eine für den Pendelwinkel und eine für die Federauslenkung. Am Ende sehen wir uns noch die linearisierte Form der Bewegungsgleichungen an und stellen fest, dass es auch dort Kopplungen gibt. Alle Details gibt es wie gewohnt im verlinkten Video. Viel Spaß dabei!

Unterstützt bitte auch meine Arbeit durch ein Like und eine Weiterempfehlung der Website und meines YouTube Kanals. Falls ihr es noch nicht getan habt, helft ihr außerdem mit einem Abo des Blogs und des Kanals. Das kostet schließlich nichts. Vielen Dank!

Viel Spaß mit dem Beispiel und bis bald,
Markus

Lagrange: Doppelpendel an Federaufhängung

Herzlich Willkommen!

Wir sehen uns hier einen Klassiker der Lagrange-Mechanik, nämlich das mathematische Doppelpendel, mit einer vertikal federnden Aufhängung an. Das ist auch insofern ein gutes Beispiel für Lagrange-Mechanik, als es sich um insgesamt drei Freiheitsgrade handelt.

Ein mathematisches Doppelpendel ist mittels einer Feder am Koordinatenursprung aufgehängt. Die Pendelmassen seien jeweils m und die Pendellängen l. Die Federkonstante betrage c und die Feder sei in der Position r = r0 vollkommen entspannt.

Ermittle für dieses System:
(a) die generalisierten Koordinaten und Geschwindigkeiten.
(b) die Lagrange Funktion L.
(c) die Bewegungsgleichungen in allen generalisierten Koordinaten.
(d) die Periodendauer T des Systems, wenn die Pendelwinkel durch ein technisches Gebrechen plötzlich fixiert werden, d.h. φ = φ0 = const. und ψ = ψ0 = const.

Die Angabe gibt es wie gewohnt zum Download.

Wir benötigen zu Beginn wieder die Koordinaten und Geschwindigkeiten der Massepunkte im System um die Energien aufstellen zu können. Die Koordinaten des Aufhängepunktes sind nicht notwendig, obwohl sich dieser natürlich bewegt. Allerdings hat er in dieser Idealisierung keine Masse und damit auch keine Energie und trägt damit auch nichts zur Lagrangefunktion bei. Anschließend können wir kinetische und potentielle Energie des Systems, sowie die Lagrangefunktion berechnen. Damit lassen sich über die Euler-Lagrange-Gleichungen drei gekoppelte Bewegungsgleichungen für die beiden Pendelwinkel und die Federauslenkung ableiten. Als Spezialfall betrachten wir dann noch die Bewegung für die Federauslenkung r wenn die beiden Pendelwinkel fixiert werden. Dabei handelt es sich dann direkt um eine Linearisierung und wir können Eigenkreisfrequenz und Periodendauer bestimmt werden. Alle Details inkl. weiterer Diskussionen gibt es wie gewohnt im verlinkten Video. Viel Spaß dabei!

Unterstützt bitte auch meine Arbeit durch ein Like und eine Weiterempfehlung der Website und meines YouTube Kanals. Falls ihr es noch nicht getan habt, helft ihr außerdem mit einem Abo des Blogs und des Kanals. Das kostet schließlich nichts. Vielen Dank!

Viel Spaß mit dem Beispiel und bis bald,
Markus

Stoß: Physikalisches Pendel trifft auf Wand

Herzlich Willkommen!

Im Stoßbeispiel, dass wir uns für heute vornehmen möchten, geht es um ein physikalisches Pendel mit einer Pendelkugel. Diese Pendelkugel wird aus der Ruhe losgelassen und trifft am tiefsten Punkt an eine Wand. Der Stoßvorgang selbst hat dabei eine definierte Stoßziffer ε, ist also weder vollkommen elastisch noch vollkommen plastisch.

Das abgebildete Pendel besteht aus einer Vollkugel mit Radius r und Masse mK und einem schlanken Stab mit Länge l und Masse mS. Ein Ende des Stabes ist in A mit Abstand r zur Wand frei drehbar gelagert. Das Pendel wird in der Winkellage θ=θ1 aus der Ruhe freigegeben. Die Stoßziffer ist ε.

Geg.: mK=50kg,mS=20kg,l=2m,r=0.3m,ε=0.6,θ1=0∘

Bestimme den Winkel θ=θ2, bis zu dem das Pendel zurückschwingt nachdem es an der Wand angestoßen ist.

Quelle: Aufgabe 8.52 (S. 582) aus Russell C. Hibbeler, Technische Mechanik 3 Dynamik, 2012 Pearson Deutschland GmbH

Die Angabe gibt es wie gewohnt zum Download. Somit könnt ihr das Beispiel zuerst selbst rechnen und dann mit der Musterlösung vergleichen.

Wir können in diesem Fall die Winkelgeschwindigkeit des Pendels unmittelbar vor dem Stoß mittels Energieerhaltung sehr einfach berechnen. Für den Stoßvorgang selbst ist dann nur noch die Newton’sche Stoßhypothese – also das Verhältnis aus relativer Trennungsgeschwindigkeit zu relativer Annäherungsgeschwindigkeit – relevant, sowie eine kinematische Überlegung aus der wir die Geschwindigkeiten am Stoßpunkt selbst erhalten. Damit lässt sich die Winkelgeschwindigkeit des Pendels unmittelbar nach dem Stoß berechnen. Zum Schluss können wir dann wieder Energieerhaltung anwenden und damit bestimmen wie weit das Pendel zurückschwingt. Schritt für Schritt und anschaulich erklärt gibt es das ganze wieder im verlinkten Video. Viel Spaß dabei!

Bei Fragen könnt ihr jederzeit gerne entweder hier oder auf YouTube einen Kommentar hinterlassen. Ich werde alle Kommentare wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte auch ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen und empfehlt mich gerne weiter. Vielen herzlichen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Arbeitssatz: Massen mit Rolle und Seil

Herzlich Willkommen!

In diesem Beispiel zum Arbeitssatz sehen wir uns ein Beispiel an, das normalerweise oft mit Schwerpunkt- und Drehimpulssatz gerechnet wird. Hier haben wir es aber zusätzlich auch noch mit Reibung zu tun.

Ein über eine Rolle geführtes Seil verbindet zwei Körper mit den Massen m1 und m2 miteinander. Die Masse m1 ist dabei größer als die Masse m2. Es tritt kein Schlupf auf.

Geg.: Θ0, m1, m2, μ

Bestimme die Geschwindigkeit beider Körper in Abhängigkeit vom Ort, wenn das System aus der Ruhe losgelassen wird.

Die Angabe gibt es wie üblich hier zum Download.

Wir beginnen auch hier wieder mit einem Freikörperbild. Darin vermerken wir nicht nur die Kräfte, sondern auch alle dynamische Größen, d.h. Geschwindigkeiten und Winkelgeschwindigkeiten im System. Danach können wir direkt den Arbeitssatz aufstellen. Die Kinematik im System, also die Abrollbedingung, hilft uns, auch die Winkelgeschwindigkeit als Funktion der translatorischen Geschwindigkeit der Massen auszudrücken. Natürlich müssen wir in diesem Beispiel auch den Reibungseinfluss im Arbeitssatz berücksichtigen, also die Reibkraft zwischen schiefer Ebene und Klotz bestimmen. Die Geschwindigkeit der Massen als Funktion des Ortes lässt sich nach sinnvollem Umformen des Arbeitssatzes dann direkt aus diesem bestimmen. Schritt für Schritt erkläre ich den gesamten Rechenweg im verlinkten Video. Viel Spaß bei der Bearbeitung!

Sollten Fragen auftauchen oder ihr Anmerkungen haben, dann zögert bitte nicht mir hier oder auf YouTube einen Kommentar zu hinterlassen. Ich freue mich immer auf eure Rückmeldungen und beantworte sämtlichen Fragen schnell und gerne.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte unbedingt auch ein Like auf YouTube da und abonniert diesen Blog. Außerdem freue ich mich über ein Abo meines YouTube Kanals! Ihr helft mir damit enorm. Vielen Dank!

Viel Spaß mit dem Beispiel und bis bald,
Markus

Relativkinetik: Masse in rotierendem Rohr an Feder

Herzlich Willkommen!

Diesmal geht es um eine Variation eines Klassikers der Relativkinetik, nämlich eine Masse in einem rotierenden Rahmen, welche zusätzlich an einem Ende mit einer Feder verbunden ist.

In einem Rahmen, der sich nach dem vorgegebenen Winkel-Zeit-Gesetz φ(t) in der xy-Ebene um den raumfesten Punkt 0 dreht, kann reibungsfrei eine Masse m gleiten, die mit einer Feder (Federkonstante c) verbunden ist. In der Lage q=L sei die Feder entspannt.

Berechne bezogen auf die Masse m folgende Größen:
*Ortsvektor des Schwerpunktes
*Relativgeschwindigkeit, Führungsgeschwindigkeit und Absolutgeschwindigkeit
*Relativbeschleunigung, Führungsbeschleunigung, Coriolisbeschleunigung, Absolutbeschleunigung
*Bewegungsgleichung der Relativbewegung der Masse im rotierenden Bezugssystem.
*Normalkraft als Funktion der kinematischen Größen und der Masse m

Und wie immer die Angabe zum Download:

Wir stellen zuallererst, wie in der Angabe gefordert, den Ortsvektor für die Masse auf. Dann können wir aus Relativ- und Führungsgeschwindigkeit den Vektor der Absolut-geschwindigkeit, sowie aus den Beschleunigungskomponenten eben den Absolut-beschleunigungsvektor berechnen. Mit Hilfe des Schwerpunktsatzes erhalten wir schließlich die Bewegungsgleichung für die Masse und können auch die Normalkraft auf die Masse bestimmen. Eine genaue Anleitung dazu mit den üblichen weiterführenden Erklärungen findest du im angehängten Video.

Bei Fragen oder Anmerkungen zu Beispiel oder Rechenweg bitte einfach hier oder auf YouTube einen Kommentar hinterlassen. Ich freue mich auf eure Rückmeldungen und beantworte gerne alle Fragen.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald,
Markus

Lagrange: Pendel mit Feder an beweglicher Aufhängung

Herzlich Willkommen!

In diesem Lagrange-Beispiel geht es um ein mathematisches Pendel, das an einem horizontal frei beweglichen Aufhängepunkt befestigt ist. Außerdem kann sich die Fadenlänge des Pendels über eine Feder ändern.

Ein mathematisches Pendel mit einer eingearbeiteten Feder ist so befestigt, dass sich sein Aufhängepunkt frei in x-Richtung bewegen kann. Die Feder ist bei r = r0 vollkommen entspannt und ihre Federkonstante sei k.

Bestimme
*die generalisierten Koordinaten und Geschwindigkeiten.
*die Lagrange-Funktion des Systems.
*alle Bewegungsgleichungen des gegebenen Federpendels.

Die Angabe gibt es wie gewohnt zum Download.

Der erste Schritt in beinahe jedem Lagrange-Beispiel ist das Aufstellen der relevanten Koordinaten, hier für die Punktmasse. Wichtig ist zu beachten, dass nicht nur ξ und φ zeitabhängig sind, sondern auch die Pendellänge r aufgrund der Feder. Um das bei unseren Ableitungen nicht zu vergessen bietet es sich an explizit r(t) zu schreiben. Abgesehen davon gibt es eigentlich keine Stolpersteine und wir können durch zeitliches Ableiten wieder die Geschwindigkeiten für die Punktmasse bestimmen. Dann geht es auch schon an die Berechnung von kinetischer und potentieller Energie und schließlich der Lagrangefunktion. Da wir hier drei Freiheitsgrade in Form der generalisierten Koordinaten ξ, φ und r vorliegen haben, erhalten wir durch anwenden der Euler-Lagrange Gleichungen natürlich auch drei Bewegungsgleichungen, nämlich eine in jeder dieser generalisierten Koordinaten. Wichtig ist hier wieder, dass diese Bewegungsgleichungen gekoppelt sein müssen. Andernfalls haben wir bei der Berechnung einen Fehler gemacht und müssten noch einmal nachprüfen. Für eine detaillierte Schritt-für-Schritt Rechnung seht euch bitte wieder das verlinkte Video an und stellt gerne jederzeit Fragen dazu.

Unterstützt bitte auch meine Arbeit durch ein Like und eine Weiterempfehlung der Website und meines YouTube Kanals. Falls ihr es noch nicht getan habt, helft ihr außerdem mit einem Abo des Blogs und des Kanals. Das kostet schließlich nichts. Vielen Dank!

Viel Spaß mit dem Beispiel und bis bald,
Markus

Lagrange: Vollzylinder rollt in Hohlzylinder

Herzlich Willkommen!

Wir wollen uns in diesem Beitrag ein relativ komplexes Beispiel aus der Dynamik ansehen und dieses Mittels der Methode von Lagrange lösen.

Ein homogener Hohlzylinder (Masse M, Radius R) sei im Schwerefeld g=−g*ez um eine horizontale Achse durch den Mittelpunkt P drehbar gelagert. In diesem Hohlzylinder rollt ein homogener Vollzylinder (Masse m, Radius r) ohne zu gleiten. Die beiden Zylinderachsen seien parallel.

Zusätzliche Angaben:
O und P raumfeste Punkte, A,B,C und S körperfest auf den Zylindern, sodass im Gleichgewicht C auf O, B auf O und S auf PO liegen,
ψ: Auslenkung des Hohlzylinders aus der Gleichgewichtslage,
χ: Auslenkung des Vollzylinders aus der Gleichgewichtslage,
φ: Winkellage des Schwerpunktes des Vollzylinders

Formulieren Sie die Zwangsbedingungen und legen Sie die generalisierten Koordinaten fest. Bestimmen Sie die Lagrange-Funktion. Wie lauten die Bewegungsgleichungen? Bestimmen Sie die Eigenfrequenz im Fall kleiner Auslenkungen.

Quelle: Aufgabe 1.2.12 (S. 51) aus W. Nolting, Grundkurs Theoretische Physik 2, Analytische Mechanik, 2011, Springer, Berlin

Die Angabe kann wie gewohnt hier heruntergeladen werden.

Die Schwierigkeit in diesem Beispiel liegt vor allem im Aufstellen der Zwangsbedingung (Abrollbedingung), sowie in der Tatsache, dass eine Auslenkung des Vollzylinder-Schwerpunkts bereits auch ein Rollen des Vollzylinders bedingt. Andernfalls würde der Zylinder ja rutschen müssen. Diese Tatsache muss beim Aufstellen der kinetischen Energie besonders berücksichtigt werden. Wir nehmen uns daher im Video genug Zeit das zu tun. Wenn allerdings diese Hürde einmal genommen ist, handelt es sich um ein standardmäßiges Lagrange-Beispiel. Wir erhalten wie gewohnt die Bewegungsgleichungen aus der Lagrangefunktion durch Anwendung der Euler-Lagrange Gleichungen und können diese anschließend linearisieren. Aus der linearisierten Form erhalten wir schließlich auch die gesuchte Eigenkreisfrequenz. Für die Details schau dir bitte wieder das Video an und versuche die einzelnen Schritte möglichst gut nachzuvollziehen. Wenn Fragen auftauchen melde dich bitte sehr gerne in den Kommentaren bei mir. Dafür stelle ich dieses Angebot schließlich zur Verfügung.

Wenn dir das Beispiel und die Musterlösung gefallen haben, dann lass bitte unbedingt ein Like auf YouTube da und abonniere diesen Blog und den YouTube Kanal. Das ist meine größte Motivation auch weiterhin viel Arbeit in dieses Projekt zu stecken. Vielen Dank für deine Unterstützung!

Viel Spaß mit dem Beispiel und bis bald,
Markus