Lagrange: Block mit Pendel auf schiefer Ebene

Herzlich Willkommen!

Diesmal geht es um ein System aus einem Block und einem mathematischen Pendel. Das Pendel schwingt um den Schwerpunkt des Blocks, während der Block eine schiefe Ebene entlang gleitet.

Ein Block der Masse M gleite reibungsfrei unter dem Einfluss der Schwerkraft auf einer schiefen Ebene mit Neigungswinkel α gegen die Horizontale. An seinem Schwerpunkt sei die Masse m über einen masselosen Faden der Länge l befestigt.

Ges.:
*Wie lautet die Lagrange-Funktion des Systems sowie dessen Bewegungsgleichungen bzgl. s und φ?
*Errechnen Sie eine geschlossene Differentialgleichung für φ(t).
*Geben Sie die Eigenfrequenz ω der Schwingung für M sehr viel größer als m und kleine Winkelausschläge (φ ~ α) an und zeigen Sie, dass φ(t)=α+φsin(ωt+δ) eine gültige Lösung darstellt.

Hinweis: Zur Vereinfachung der Ergebnisse benötigen Sie die Additionstheoreme cos(α−β)=cosαcosβ+sinαsinβ
sin(α−β)=sinαcosβ−cosαsinβ

Quelle: Aufgabe 1.2.12 (S. 51) aus W. Nolting, Grundkurs Theoretische Physik 2, Analytische Mechanik, 2011, Springer, Berlin

Die Angabe gibt es wie gewohnt als Download inkl. Endergebnissen.

Wir stellen zuallererst wieder die relevanten Koordinaten von Block und Pendelmasse auf und drücken sie als Funktion der generalisierten Koordinate (s und Pendelwinkel) aus. Daraus lassen sich die Geschwindigkeiten bestimmen und anschließend beide Anteile zur Energie, kinetische und potentielle Energie, ermitteln. Dann lassen sich aus der Lagrangefunktion die Bewegungsgleichungen ableiten und eine geschlossene Differentialgleichung für den Pendelwinkel anschreiben. Schließlich können wir die geforderte Linearisierung durchführen. Wie immer gibt es die ausführliche Erklärung im verlinkten Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Viel Spaß mit diesem Beispiel und bis bald,
Markus

Lagrange: Block auf zwei Stangen mit Drehfedern

Herzlich Willkommen!

Wir sehen uns heute ein Beispiel aus der Dynamik an, welches mit der Methode von Lagrange berechnet werden soll. Dabei besprechen wir auch, wie Federn in diesem Zusammenhang zu behandeln sind.

Zwei drehbar gelagerte Stangen (Länge l=0.8 m, Masse m2=5 kg) sind an einem Block (Masse m1=12 kg) gelenkig angeschlossen. Am Ende jeder Stange ist eine Torsionsfeder (Federsteifigkeit K=500 Nm) befestigt. Das System ist in der gezeichneten Lage im Gleichgewicht.

Ges.:
*die Lagrange Funktion,
*die Bewegungsgleichung mittels der Methode von Lagrange,
*die Eigenfrequenz f und die Periodendauer T für kleine Auslenkungen um die Gleichgewichtslage.

Die Angabe gibt es wie gewohnt als Download inkl. Endergebnissen.

Wir stellen zuallererst die relevanten Koordinaten auf und drücken sie als Funktion der generalisierten Koordinate (Stangenwinkel) aus. Daraus lassen sich die Geschwindigkeiten bestimmen und anschließend beide Anteile zur Energie, kinetische und potentielle Energie, ermitteln. Die Energien der Federn müssen als Anteil der potentiellen Energie mit berücksichtigt werden. Dann lässt sich aus der Lagrangefunktion die Bewegungsgleichung ableiten und Eigenfrequenz und Periodendauer für den linearisierten Fall bestimmen. Wie immer gibt es die ausführliche Erklärung im verlinkten Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Viel Spaß mit diesem Beispiel und bis bald,
Markus

Lagrange: Massen an beweglichem Faden

Herzlich Willkommen!

Diesmal gibt es ein etwas komplexeres Beispiel aus der Dynamik mit drei Freiheitsgraden. Es handelt sich um folgendes System:

Ein masseloser, undehnbarer Faden der Länge L ist an jedem Ende mit einem Massenpunkt der Masse m verbunden. Der Faden wird reibungsfrei durch zwei Ringe A und B im Abstand b geführt.

Bestimme
*die Zwangsbedingung, sowie die generalisierten Koordinaten und Geschwindigkeiten. *die Lagrange-Funktion des Systems.
*die Bewegungsgleichungen des Systems.

Quelle: Lagrangesche Bewegungsgleichungen Aufgabe 1 (S. 236) aus S. Kessel, Technische Mechanik Aufgabensammlung mit Musterlösungen, 2000, Dortmund

Die Angabe gibt es wie gewohnt als Download inkl. Endergebnissen.

Wie immer in der Lagrange-Mechanik müssen wir uns zuallererst Gedanken über die relevanten Koordinaten machen. Dies sind die Koordinaten der Massenschwerpunkte. Hier stellt sich dann heraus, dass sich vier beschreibende Größen ergeben, nämlich die beiden Seilwinkel, sowie die Längen der Seilstücke vom Aufhängepunkt zur jeweiligen Masse. Nachdem das Seil aber als ideal angenommen wird und damit eine konstante Länge besitzt, kann eine der Länge mittels Zwangsbedingung ersetzt werden. Damit landen wir bei drei Freiheitsgraden. Sobald das geklärt ist, können die Geschwindigkeiten abgeleitet und die Energien für das System aufgestellt werden. Danach erhalten wir aus den Euler-Lagrange-Gleichungen drei gekoppelte Bewegungsgleichungen und besprechen wie diese gelöst werden könnten. All das zeige ich wie üblich im unten verlinkten YouTube Video vor. Viel Spaß mit dem Beispiel!

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Viel Spaß mit diesem Beispiel und bis bald,
Markus

Lagrange: Doppelschaukel

Herzlich Willkommen!

Im heutigen Beispiel sehen wir uns die Dynamik einer Doppelschaukel an. Dabei vergleichen wir diese auch mit dem klassischsten aller Lagrange-Beispiele, dem mathematischen Doppelpendel.

Gegeben ist eine Doppelschaukel laut Skizze.

Ges.:
*Die Lagrange-Funktion des Systems.
*Die Bewegungsgleichungen der Doppelschaukel.

Die Angabe zum vorab selbst rechnen gibt es wieder als Download inkl. Endergebnissen.

Bei genauerer Betrachtung der Angabe lässt sich feststellen, dass die skizzierte Doppelschaukel analog zum mathematischen Doppelpendel gerechnet werden kann. Wir stellen also zuerst die Koordinaten der Schaukelschwerpunkte als Funktion der generalisierten Koordinaten, d.h. der beiden Schaukelwinkel, auf. Durch Zeitableitung dieser Koordinaten erhalten wir die Geschwindigkeiten der Schaukelschwerpunkte. Danach können wir sowohl kinetische als auch potentielle Energie berechnen um damit die Lagrangefunktion anzuschreiben. Mithilfe der Euler-Lagrange-Gleichungen erhalten wir schließlich zwei gekoppelte Bewegungsgleichungen für das System, jeweils eine für beide Schaukelwinkel. Die detaillierte Rechnung und viele weitere Bemerkungen, u. A. zur Eindeutigkeit der Lagrangefunktion findet ihr im verlinkten YouTube Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Viel Spaß mit diesem Beispiel und bis bald,
Markus

Lagrange: Massen auf Doppelkeil

Herzlich Willkommen!

Im heutigen Beispiel geht es um die Bewegung zweier Massen auf einem Doppelkeil, die mit einem Seil verbunden sind. Hier berechnen wir auch ausnahmsweise eine Kraft im Rahmen der Lagrange-Mechanik.

Zwei Massen m1 und m2 bewegen sich unter dem Einfluss der Schwerkraft reibungsfrei auf einem Keil. Sie seien durch einen masselosen Faden der Länge l = r1 + r2 miteinander verbunden.

Ges.:
*Formulieren Sie die Zwangsbedingungen. Von welchem Typ sind diese? Wie viele Freiheitsgrade s besitzt das System?
*Wählen Sie passende generalisierte Koordinaten. Geben Sie die Transformationsformeln an.
*Formulieren Sie die Lagrange-Funktion.
*Stellen Sie die Bewegungsgleichung auf und lösen Sie diese unter Berücksichtigung der Randbedingungen r1 (t=0) = r0 und v1(t=0) = 0. Stellen Sie außerdem die Gleichgewichtsbedingung für das System auf.
*Benutzen Sie die Zwangsbedingung der konstanten Fadenlänge nicht als holonome Zwangsbedingung zur Eliminierung von Variablen. Benutzen Sie stattdessen einen Lagrange’schen Multiplikator λ zur Festlegung der Fadenkraft. Wie groß ist diese im Gleichgewicht?

Aufgabe 1.2.11 (S. 51) aus W. Nolting, Grundkurs Theoretische Physik, Bd.2, Analytische Mechanik, 4. verb. Auflage, 1999, Vieweg+Teubner, Wiesbaden

Die Angabe gibt es auch hier wieder als Download inkl. Endergebnissen. Ihr könnt also auch dieses Beispiel zuerst selbst rechnen und dann mit der Musterlösung vergleichen.

In diesem Beispiel zur Lagrange-Mechanik sehen wir uns im Detail an, was Zwangsbedingungen eigentlich sind und wie diese aufgestellt werden. Dann wählen wir anhand dieser Diskussion geeignete generalisierte Koordinaten und stellen wie üblich kinetische und potentielle Energie sowie die Lagrange-Funktion auf. Die Bewegungsgleichung (in diesem Fall ist es nur eine) bestimmen wir aus der Euler-Lagrange-Gleichung und lösen diese dann auch um das Bewegungs-Zeit-Gesetz zu bestimmen. Dann überlegen wir uns wie das allgemeine Gleichgewicht im System aussehen wird. Am Ende bestimmen wir auch noch die Fadenkraft mithilfe eines sogenannten Lagrange-Multiplikators, also unter zu Hilfenahme einer Zwangskraft. Wie diese Rechnung Schritt-für-Schritt funktioniert erkläre ich euch wieder im angehängten YouTube Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Viel Spaß mit diesem Beispiel und bis bald,
Markus

Lagrange: Schwingung eines physikalischen Doppelpendels

Herzlich Willkommen!

Ich möchte die Gelegenheit nutzen und in den nächsten Tagen Beiträge zu bereits vor dem Neustart des Blogs veröffentlichten Videos nachholen. Wir beginnen mit einem Beispiel zur Lagrange-Mechanik, nämlich dem physikalischen Doppelpendel.

Ein ebenes physikalisches Doppelpendel aus schlanken Stäben mit den Angaben laut Skizze (Stablängen a, Massen m1, m2, Schwerpunktsabstände s1, s2 und Pendelwinkel φ1, φ2) soll betrachtet werden.

Ges.:
*Lagrange-Funktion des Systems.
*Bewegungsgleichungen in den generalisierten Koordinaten φ1 und φ2.
*Wie kann der Spezialfall erreicht werden, dass das unter Pendel keine Relativbewegung zum oberen Pendel vollführt, das System also als einfaches Pendel schwingt?

Die Angabe gibt es auch hier wieder als Download inkl. Endergebnissen. Ihr könnt also das Beispiel zuerst selbst rechnen und dann mit meiner Musterlösung vergleichen.

Wie in der Lagrange-Mechanik üblich stellen wir zuerst die relevanten Koordinaten als Funktion der generalisierten Koordinaten auf. Anschließend können diese Koordinaten nach der Zeit abgeleitet werden um die Geschwindigkeiten zu bestimmen. Die Berechnung der kinetischen und potentiellen Energie des Systems führt schließlich zur Lagrange-Funktion. Über die Euler-Lagrange-Gleichung lassen sich dann die Bewegungsgleichungen berechnen. Am Ende des Beispiels überlegen wir uns wie der Spezialfall einer einfachen Pendelschwingung erreicht werden kann. An dieser Stelle gibt es auch eine spannende historische Anmerkung. Wie die Rechnung detailliert abläuft erkläre ich euch im verlinkten YouTube Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Viel Spaß mit diesem Lagrange Beispiel und bis demnächst,
Markus