Statik in 3D: Mittels Seil abgespannter Mast

Herzlich Willkommen!

Hast du dich auch schon einmal gefragt wozu wir Vektoren in der Mechanik brauchen? Wieso schreiben wir Kräfte als Vektoren an, wenn wir doch auch Komponentenweise arbeiten können? Ist es dann überhaupt sinnvoll mit Vektoren zu arbeiten? Diese und weitere Fragen werde ich in diesem Beispiel versuchen zu beantworten.

Es geht um folgendes dreidimensionales Statikproblem:

Ein Mast wird von zwei Seilen BC und BD gehalten. Am Punkt B greifen die Kräfte F1 und F2 an. Bestimme unter der Voraussetzung, dass der Mast von einem Kugelgelenk am Fuß gehalten wird, die Komponenten der Lagerkraft in A. Die Kräfte F1 und F2 liegen in einer horizontalen Ebene.

Geg.: F1=140kN, F2=75kN, a=10m, b=5m, c=15m, α=30°

Quelle: Aufgabe 5.89 (S. 296) aus Russell C. Hibbeler, Technische Mechanik 1 Statik, 12. Auflage, 2012 Pearson GmbH, München

Wie fast immer, beginnen wir auch hier mit einem Freikörperbild um einen Überblick über die am Mast angreifenden Kräfte zu bekommen. Dann schreiben wir die Koordinaten der Punkte B, C und D an und können damit sehr einfach die Ortsvektoren und mit deren Betrag auch die Einheitsvektoren entlang der Seile aufstellen. In einem abschließenden Schritt können dann alle Kraftvektoren angeschrieben werden.
Da wir uns in der Statik befinden, müssen natürlich die Kraft- und Momentensummen verschwinden. Das gilt selbstverständlich auch für die vektoriellen Summen. Hier muss sich der Nullvektor ergeben. Wir können also alle drei Kraftrichtungen in eine vektorielle Bilanz zusammenfassen. Analoges gilt für die Momentenbilanz. Die einzelnen Momente berechnen wir dann natürlich mit dem Kreuzprodukt zwischen Abstandsvektoren und Kraftvektoren. Damit bekommen wir am Ende ein System aus fünf unabhängigen Gleichungen, welches wir auflösen und die fünf Unbekannten bestimmen können. Wir finden außerdem heraus, dass es sich beim Mast um einen sogenannten Zweikraftstab handelt. Alle Details gibt es wie gewohnt im verlinkten Video. Viel Spaß beim Nachvollziehen der einzelnen Schritte.


Wenn Fragen oder Unklarheiten auftauchen, freue ich mich jederzeit auf eure Kommentare – entweder hier oder direkt auf YouTube.

Bis bald,
Markus

Lagrange: Pendel mit Feder an beweglicher Aufhängung

Herzlich Willkommen!

In diesem Lagrange-Beispiel geht es um ein mathematisches Pendel, das an einem horizontal frei beweglichen Aufhängepunkt befestigt ist. Außerdem kann sich die Fadenlänge des Pendels über eine Feder ändern.

Ein mathematisches Pendel mit einer eingearbeiteten Feder ist so befestigt, dass sich sein Aufhängepunkt frei in x-Richtung bewegen kann. Die Feder ist bei r = r0 vollkommen entspannt und ihre Federkonstante sei k.

Bestimme
*die generalisierten Koordinaten und Geschwindigkeiten.
*die Lagrange-Funktion des Systems.
*alle Bewegungsgleichungen des gegebenen Federpendels.

Die Angabe gibt es wie gewohnt zum Download.

Der erste Schritt in beinahe jedem Lagrange-Beispiel ist das Aufstellen der relevanten Koordinaten, hier für die Punktmasse. Wichtig ist zu beachten, dass nicht nur ξ und φ zeitabhängig sind, sondern auch die Pendellänge r aufgrund der Feder. Um das bei unseren Ableitungen nicht zu vergessen bietet es sich an explizit r(t) zu schreiben. Abgesehen davon gibt es eigentlich keine Stolpersteine und wir können durch zeitliches Ableiten wieder die Geschwindigkeiten für die Punktmasse bestimmen. Dann geht es auch schon an die Berechnung von kinetischer und potentieller Energie und schließlich der Lagrangefunktion. Da wir hier drei Freiheitsgrade in Form der generalisierten Koordinaten ξ, φ und r vorliegen haben, erhalten wir durch anwenden der Euler-Lagrange Gleichungen natürlich auch drei Bewegungsgleichungen, nämlich eine in jeder dieser generalisierten Koordinaten. Wichtig ist hier wieder, dass diese Bewegungsgleichungen gekoppelt sein müssen. Andernfalls haben wir bei der Berechnung einen Fehler gemacht und müssten noch einmal nachprüfen. Für eine detaillierte Schritt-für-Schritt Rechnung seht euch bitte wieder das verlinkte Video an und stellt gerne jederzeit Fragen dazu.

Unterstützt bitte auch meine Arbeit durch ein Like und eine Weiterempfehlung der Website und meines YouTube Kanals. Falls ihr es noch nicht getan habt, helft ihr außerdem mit einem Abo des Blogs und des Kanals. Das kostet schließlich nichts. Vielen Dank!

Viel Spaß mit dem Beispiel und bis bald,
Markus

Lagrange: Vollzylinder rollt in Hohlzylinder

Herzlich Willkommen!

Wir wollen uns in diesem Beitrag ein relativ komplexes Beispiel aus der Dynamik ansehen und dieses Mittels der Methode von Lagrange lösen.

Ein homogener Hohlzylinder (Masse M, Radius R) sei im Schwerefeld g=−g*ez um eine horizontale Achse durch den Mittelpunkt P drehbar gelagert. In diesem Hohlzylinder rollt ein homogener Vollzylinder (Masse m, Radius r) ohne zu gleiten. Die beiden Zylinderachsen seien parallel.

Zusätzliche Angaben:
O und P raumfeste Punkte, A,B,C und S körperfest auf den Zylindern, sodass im Gleichgewicht C auf O, B auf O und S auf PO liegen,
ψ: Auslenkung des Hohlzylinders aus der Gleichgewichtslage,
χ: Auslenkung des Vollzylinders aus der Gleichgewichtslage,
φ: Winkellage des Schwerpunktes des Vollzylinders

Formulieren Sie die Zwangsbedingungen und legen Sie die generalisierten Koordinaten fest. Bestimmen Sie die Lagrange-Funktion. Wie lauten die Bewegungsgleichungen? Bestimmen Sie die Eigenfrequenz im Fall kleiner Auslenkungen.

Quelle: Aufgabe 1.2.12 (S. 51) aus W. Nolting, Grundkurs Theoretische Physik 2, Analytische Mechanik, 2011, Springer, Berlin

Die Angabe kann wie gewohnt hier heruntergeladen werden.

Die Schwierigkeit in diesem Beispiel liegt vor allem im Aufstellen der Zwangsbedingung (Abrollbedingung), sowie in der Tatsache, dass eine Auslenkung des Vollzylinder-Schwerpunkts bereits auch ein Rollen des Vollzylinders bedingt. Andernfalls würde der Zylinder ja rutschen müssen. Diese Tatsache muss beim Aufstellen der kinetischen Energie besonders berücksichtigt werden. Wir nehmen uns daher im Video genug Zeit das zu tun. Wenn allerdings diese Hürde einmal genommen ist, handelt es sich um ein standardmäßiges Lagrange-Beispiel. Wir erhalten wie gewohnt die Bewegungsgleichungen aus der Lagrangefunktion durch Anwendung der Euler-Lagrange Gleichungen und können diese anschließend linearisieren. Aus der linearisierten Form erhalten wir schließlich auch die gesuchte Eigenkreisfrequenz. Für die Details schau dir bitte wieder das Video an und versuche die einzelnen Schritte möglichst gut nachzuvollziehen. Wenn Fragen auftauchen melde dich bitte sehr gerne in den Kommentaren bei mir. Dafür stelle ich dieses Angebot schließlich zur Verfügung.

Wenn dir das Beispiel und die Musterlösung gefallen haben, dann lass bitte unbedingt ein Like auf YouTube da und abonniere diesen Blog und den YouTube Kanal. Das ist meine größte Motivation auch weiterhin viel Arbeit in dieses Projekt zu stecken. Vielen Dank für deine Unterstützung!

Viel Spaß mit dem Beispiel und bis bald,
Markus

Exzentrischer Stoß zweier quadratischer Scheiben

Herzlich Willkommen!

Diesmal sehen wir uns einen exzentrischen aber ebenen Stoß zweier quadratischer Scheiben an und überlegen uns, wie ein effizienter Rechenweg für ein solches Problem aussehen kann.

Zwei quadratische Scheiben bewegen sich nicht rotierend und reibungsfrei in der xy-Ebene so aufeinander zu, dass sie genau in den Eckpunkten B1 und B2 zusammenstoßen, wobei die Stoßnormale n=ex sein soll. Die Stoßziffer sei ε. Zusätzlich gegeben sind die eingezeichneten Geschwindigkeiten v1,v2,φ˙1,φ˙2 unmittelbar vor dem Stoß, sowie die Massen der Scheiben m1 und m2.

Ges.:
*Die translatorischen Geschwindigkeiten der Scheibenschwerpunkte v′S1, v′S2, sowie die Winkelgeschwindigkeiten φ˙′1, φ˙′2 der Scheiben unmittelbar nach dem Stoß.

Quelle: Aufgabe 2 (S. 320f.) aus S. Kessel, Technische Mechanik Aufgabensammlung mit Musterlösungen, 2000 Universität Dortmund

Die Angabe gibt es wie gewohnt zum Download. Somit könnt ihr das Beispiel zuerst selbst rechnen und dann mit der Musterlösung vergleichen.

In diesem Problem bewegen sich beide Scheiben vor dem Stoß rein translatorisch aufeinander zu. Nachdem sie aber im Punkt B – also exzentrisch – Stoßen, werde nach dem Stoßvorgang beide Scheiben eine Winkelgeschwindigkeit aufweisen. Außerdem ist zu berücksichtigen, dass wir die Vorzeichen der Geschwindigkeiten und Stoßantriebe korrekt übernehmen. Ich rate in diesem Fall immer dazu zuerst die Geschwindigkeiten positiv anzusetzen und erst nachträglich das tatsächliche Vorzeichen in die Gleichungen einzusetzen. Dadurch passieren meiner Erfahrung nach wesentlich weniger Vorzeichenfehler. Als grundlegende Gleichungen verwenden wir in diesem Problem die Impuls- und Drehimpulssätze der beiden Scheiben, sowie die Stoßhypothese in Kombination mit ebener Kinematik. Die Kinematik ist notwendig, da wir die Stoßhypothese bekanntlich im Stoßpunkt – also hier in B – ansetzen müssen. Die Geschwindigkeit im Punkt B nach dem Stoß ist allerdings durch die Drehbewegung eine andere als im Schwerpunkt. Hier also bitte um besondere Vorsicht. Ich schlage vor ihr seht euch wie gewohnt das verlinkte Video an. Viel Spaß damit!

Bei Fragen könnt ihr jederzeit gerne entweder hier oder auf YouTube einen Kommentar hinterlassen. Ich werde alle Kommentare wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte auch ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen und empfehlt mich gerne weiter. Vielen herzlichen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Lagrange: Kreisscheibe mit Klotz, Pendel und Drehfeder

Herzlich Willkommen!

Wir sehen uns diesmal ein System aus Klotz, Kreisscheibe und Pendel an. Das Pendel ist zudem an seinem Aufhängepunkt mit einer Drehfeder beaufschlagt.

Auf eine in O drehbar gelagerte Kreisscheibe (Radius L, Masse m) ist ein Faden gewickelt, der im Punkt B mit einer Masse m verbunden ist. In A ist eine Stange (Länge 2L, Masse m) über eine Drehfeder (Federkonstante k, in der Lage φ=0, ψ=0 entspannt) mit der Kreisscheibe gelenkig verbunden.

Ges.:
*Lagrange-Funktion des Systems.
*Bewegungsgleichungen in den Koordinaten φ und ψ.

Quelle: Aufgabe 4 (S. 242) aus S. Kessel, Technische Mechanik – Aufgabensammlung mit Musterlösungen, 2000, Dortmund

Die Angabe gibt es wie gewohnt zum Download.

Wie üblich stellen wir zuerst die relevanten Schwerpunktskoordinaten als Funktion unserer generalisierten Koordinaten auf. Daraus lassen sich dann die Geschwindigkeiten durch einfache Zeitableitung bestimmen. Über kinetische und potentielle Energie wird im Anschluss die Lagrangefunktion des Systems ermittelt. Schließlich nutzen wir zur Bestimmung der Bewegungsgleichungen die Euler-Lagrange Gleichung und erhalten zwei gekoppelte Bewegungsgleichungen in den generalisierten Koordinaten. Als wichtigen Punkt diskutieren wir am Ende des Beispiels noch die Bedeutung der Kopplung für die Dynamik des Systems. Ausführlich und mit beliebigen Zwischenstopps lässt sich das alles wieder im verlinkten Video nachvollziehen.

Sollten Fragen auftauchen oder ihr Anmerkungen haben, dann zögert bitte nicht mir hier oder auf YouTube einen Kommentar zu hinterlassen. Ich freue mich auf eure Rückmeldungen.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte unbedingt ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal! Ihr helft mir damit enorm. Vielen Dank!

Viel Spaß mit dem Beispiel und bis bald,
Markus

Stoß: Stabkette trifft auf Anschlag

Herzlich Willkommen!

Im aktuellen Stoßproblem geht es um eine Stabkette aus zwei Stäben, deren oberer Stab beim Stoßvorgang von einem Anschlag gefangen wird. Dadurch wird seine gesamte Energie vom Anschlag aufgenommen, d.h. dissipiert.

Eine aus zwei gleichen, homogenen Stäben bestehende Stabkette trifft in gestreckter Lage mit der Winkelgeschwindigkeit ω auf einen Anschlag B. Nach dem vollkommen plastischen Stoß bleibt der Stab 1 in Ruhe, was für den Stab 2 eine plötzliche Fixierung der Achse 0 bedeutet.

Geg.:
*Abmessungen l, λl
*Masse m der homogenen, dünnen Stäbe
*Winkelgeschwindigkeit ω unmittelbar vor dem Stoß.

Ges.:
*Winkelgeschwindigkeit ω′ des Stabes 2 unmittelbar nach dem Stoß.
*Stoßantrieb SA im Lager A
*Welchen Wert muss λ haben, damit das Lager A stoßfrei bleibt (SA=0)?
*Energieverlust beim Stoß

Quelle: Aufgabe 4.6.5 (S. 49) aus P. Lugner et al., Technische Mechanik, 1992 Springer-Verlag, Wien

Die Angabe gibt es wie gewohnt als Download inkl. Endergebnissen. Ihr könnt damit das Beispiel zuerst selbst rechnen und dann mit meiner Musterlösung vergleichen.

Wir können dieses Problem auf zwei Arten berechnen. Einerseits können wir die Stabkette als ganzes betrachten und andererseits können wir die beiden Stäbe im Gelenk trennen und als getrennte Systeme ansehen. Ich habe mich hier für die zweitere Variante entschieden, weil ich denke, dass diese einfacher nachvollziehbar ist.
Probiert aber natürlich gerne auch die erste Variante aus und überprüft ob die Ergebnisse übereinstimmen. Wichtig ist, dass der obere Stab dann als masselos angenommen werden muss, da ja seine gesamte Rotationsenergie dissipiert wird.
In der getrennten Variante stellen wir einfach Impuls- und Drehimpulssätze für die beiden Stäbe auf. Dabei ist zu beachten, dass sich der Drehpunkt während des Stoßvorgangs ändert. Vor dem Stoß liegt der Drehpunkt im Lager A, nach dem Stoß im Punkt 0. Das ist natürlich relevant für die Kinematik im System. Am besten ihr seht euch wie gewohnt das verlinkte Video an um die ausführliche Erklärung zu erhalten. Viel Spaß damit!

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Stoß zweier Quader inkl. Reibung

Herzlich Willkommen!

Wir wollen uns diesmal einen Stoß zweier Quader ansehen. Bevor jedoch der Stoß passiert wird einer der beiden Quader von einer Feder angestoßen und rutscht reibungsbehaftet eine schiefe Ebene hinab. Nach dem Stoßvorgang rutschen beide Quader reibungsbehaftet weiter bis sie zum Stillstand kommen.

Der Quader A mit der Masse mA wird von einer um den Federweg x vorgespannten Feder mit Federkonstante c abgestoßen und rutscht über eine raue schiefe Ebene mit Steigungswinkel α auf eine raue horizontale Bahn mit Reibungskoeffizient μ für beide Flächen. Dort stößt der Quader A auf einen ruhenden Quader B mit der Masse mB, wobei die Stoßzahl ε beträgt.

Geg.:
mA=100kg, mB=50kg, c=4000N/m, x=0.3m, α=20°, μ=0.2, s1=10m, s2=3m, ε=0.6

Ges.:
*Geschwindigkeit beider Quader unmittelbar nach dem Stoß.
*Entfernung von der Stoßstelle in der die beiden Quader zur Ruhe kommen.

Quelle: Aufgabe D27 (S. 339f.) aus J. Berger, Klausurentrainer Technische Mechanik, 2. Auflage, 2008 Vieweg+Teubner, Wiesbaden

Die Angabe gibt es natürlich auch als Download inkl. Endergebnissen. Ihr könnt damit das Beispiel zuerst selbst rechnen und dann mit meiner Musterlösung vergleichen.

Bevor der Stoßvorgang selbst berechnet werden kann, müssen wir uns einerseits der Energieerhaltung (Federvorspannung) und andererseits dem Arbeitssatz (rutschen auf der reibungsbehafteten Fläche) bedienen. Der Stoßvorgang selbst kann entweder mittels innerem Stoßantrieb (Zerlegung des Vorgangs in zwei einzelne Quader) oder für das Gesamtsystem berechnet werden. Wir sehen uns hier beide Möglichkeiten an und vergleichen diese. Nach dem Stoßvorgang nutzen wir abermals den Arbeitssatz um die Strecken zu berechnen, welche die beiden Quader bis zum Stillstand weiterrutschen. Die Details gibt es wie immer im Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Statik: Kippen einer Scheibtruhe beim Hochheben

Herzlich Willkommen!

Heute sehen wir uns das vielleicht kürzeste jemals aufgenommene Mechanik-Beispiel an. 😉
Wir wollen bestimmen wie weit eine Scheibtruhe gekippt werden kann, bevor sie umkippt.

Die Scheibtruhe mit Inhalt hat die Masse m und den Schwerpunkt S. Bestimme den größten Neigungswinkel θ, bei dem die Scheibtruhe gerade noch nicht umkippt.

Quelle: Aufgabe 5.58 (S. 289) aus Russell C. Hibbeler, Technische Mechanik 1 Statik, 12. Auflage, 2012 Pearson GmbH, München

Es geht dabei zwar schon um das Anfertigen eines Freikörperbildes, im Endeffekt aber nur um geometrische Überlegungen anhand dieses Bildes. Daher will ich auch heute gar nicht mehr verraten, sondern auf das verlinkte Video verweisen. Dort wird – in nicht einmal 5 Minuten – hoffentlich alles klar werden. Viel Spaß damit!


Bei Fragen oder Unklarheiten freue ich mich auf eure Kommentare.

Bis bald,
Markus

Gleichgewicht: Kran hebt eine Last

Herzlich Willkommen!

Auch in diesem Beispiel geht es wieder um Statik, nämlich um die Fragestellung welche Last ein Kran maximal heben kann ohne selbst umzukippen.

Der skizzierte Kran besteht aus drei Teilen mit den Gewichtskräften G1, G2, G3 und den Schwerpunkten S1, S2, S3.

Bestimme unter Vernachlässigung des Gewichtes des Auslegers
(a) die Lagerkräfte auf jeden der vier Reifen, wenn die Last mit konstanter Geschwindigkeit gehoben wird und ein Gewichtskraft G hat.
(b) die maximale Last, die der Kran mit dem Ausleger in der dargestellten Position heben kann, ohne dass er umkippt.

Geg.: G=3200N, G1=14000N, G2=3600N, G3=6000N, a=2.5m, b=0.75m, c=2m, d=1.5m, e=0.25m

Quelle: Aufgabe 5.47 (S. 287) aus Russell C. Hibbeler, Technische Mechanik 1 Statik, 12. Auflage, 2012 Pearson GmbH, München

Den Start macht wieder ein möglichst einfaches Freikörperbild, welches aber das Problem ausreichend exakt beschreibt. Daraus lassen sich dann die Gleichgewichtsbedingungen (Momenten- und Kräftegleichgewicht) aufstellen. Wir bestimmen daraus die Normalkräfte auf die Reifen des Krans und können schließlich diese Gleichungen auch nutzen um die maximale Last zu bestimmen, die der Kran heben kann ohne zu kippen. Wie gewohnt gibt es die zugehörige Schritt für Schritt Anleitung im verlinkten Video.


Bei Fragen oder Unklarheiten kommentiert bitte gerne hier oder direkt auf YouTube. Über einen Daumen hoch und ein Abo auf YouTube freue ich mich natürlich ebenfalls. Vielen Dank für eure Unterstützung!

Bis bald,
Markus

Statik: Geparktes Auto auf abschüssiger Straße – Gleichgewicht

Herzlich Willkommen!

Wir wenden unser bisher erworbenes Wissen über statisches Gleichgewicht heute auf ein geparktes Auto auf einer abschüssigen Straße an. Die Frage ist, wie groß die Bremskräfte sein müssen, damit das Auto auf der Straße stehen bleibt ohne wegzurollen.

Ein Sportwagen hat die Masse m und seinen Schwerpunkt in S. Die vorderen beiden Federn haben die Steifigkeit cA und die hinteren beiden cB. Bestimme die Stauchung der Federn, wenn das Auto auf einer schiefen Ebene laut Skizze geparkt wird. Welche Reibkraft FB muss auf jedes Hinterrad aufgebracht werden, um das Auto im Gleichgewicht zu halten?

Geg.: m = 1500kg, g = 9.81m/s^2, cA = 58 kN/m, cB = 65 kN/m, a = 0.8m, b = 1.2m,c = 0.4m, α = 30°

Quelle: Aufgabe 5.32 (S. 283) aus Russell C. Hibbeler, Technische Mechanik 1 Statik, 12. Auflage, 2012 Pearson GmbH, München

Wir wissen nun schon, dass ein Freikörperbild essentiell ist. Auch hier starten wir damit. Danach kann auch schon das Gleichgewicht der Kräfte und Momente aufgestellt werden. Da wir es mit 3 unbekannten Kräften zu tun haben, also einem statisch bestimmten System, können wir aus den drei Gleichungen des Gleichgewichts auch alle diese Kräfte berechnen. Zum Schluss diskutieren wir noch, wie sich Kraft und Stauchung bei einer idealen Feder im Allgemeinen verhalten und berechnen die Stauchungen der Federn an Vorder- und Hinterrädern. Wie gewohnt findet ihr all diese Schritte im Video.


Bei Fragen oder Unklarheiten kommentiert bitte gerne hier oder direkt auf YouTube. Über einen Daumen hoch und ein Abo auf YouTube freue ich mich natürlich ebenfalls. Vielen Dank für eure Unterstützung!

Bis bald,
Markus