Schnittgrößen am gekrümmten Träger

Herzlich Willkommen!

Wir haben uns mittlerweile über die Theorie zu Schnittgrößen unterhalten und uns auch einige Beispiele angesehen und dort Schnittgrößen an speziellen Punkten, Berechnungen des Schnittgrößenverlaufs sowie Schnittgrößen mittels Integration durchgeführt. Was uns in der Sammlung noch fehlt ist die Diskussion von Schnittgrößen am gekrümmten Träger. Dazu sehen wir uns als einfaches Beispiel einen Viertelkreisbogen an, welcher am oberen Ende eingespannt ist.

Ein Viertelkreisbogen wird laut Skizze durch die Kräfte F und P belastet. Berechne die Einspannreaktion in A sowie die Schnittgrößen N(φ), Q(φ), M(φ).

Hinweis: Das Koordinatensystem ist so zu wählen, dass es mit dem Winkel φ mit dreht, wobei für φ=0 die ex-Achse nach rechts, die ey-Achse aus der Blattebene heraus und die ez-Achse nach unten positiv festgelegt sind.

Die Berechnung der Einspannreaktionen ist für die konkrete Fragestellung – wie wir später sehen werden – eigentlich gar nicht nötig. Dennoch berechnen wir diese und holen uns damit eine wenig zusätzliche Übung. Dazu bedarf es wieder eines Freikörperbildes und dem Aufstellen der Gleichgewichtsbedingungen. Hier sind diese aber so einfach, dass wir sofort die Ergebnisse für die Lagerreaktionen anschreiben können. Effizienz ist schließlich auch wichtig. Danach geht es darum zu besprechen wie das Koordinatensystem sich entlang des Kreisbogens ändert. Das ist deshalb relevant, weil wir damit auch positives und negatives Schnittufer sowie die positiven Richtungen der Schnittgrößen selbst definieren. Ist das erledigt werden noch die Einzelkräfte P und F in Komponenten entlang des gedrehten Koordinatensystems zerlegt und wieder die Gleichgewichtsbedingungen aufgestellt. Letztere definieren dann in diesem einfachen Fall bereits die Schnittgrößen. Damit sollte auch für komplexere gekrümmte und sogar zusammengesetzte Träger prinzipiell klar sein, wie Schnittgrößen berechnet werden. Die Details und viele kleine Zusatzanmerkungen zur Rechnung findet ihr wie immer im verlinkten Video!


Den vollständigen Lösungsweg als pdf stelle ich auch hier wieder zur Verfügung.

Stellt gerne jederzeit eure Fragen. Erfahrungsgemäß handelt es sich bei Schnittgrößen am gekrümmten Träger um eine Thematik die vergleichsweise viele Fragen aufwirft. Wie ihr wisst gehe ich jederzeit gerne auf diese Fragen ein.

Vielen Dank und bis bald,
Markus

Schnittgrößen mittels Integration

Herzlich Willkommen!

Nachdem wir bereits theoretisch über Schnittgrößen diskutiert haben, uns Schnittgrößen an speziellen Punkten eines Trägers und auch die Berechnung eines Schnittgrößenverlaufs angesehen haben, möchten wir uns nun der Berechnung von Querkraft und Biegemoment mittels Integration widmen. Dazu folgendes Beispiel.

Berechne für den skizzierten Biegeträger die Auflagerreaktionen, sowie die Schnittgrößen Q(x) und M(x).
Geg.: q0, l

Hinweis: Das Koordinatensystem ist so zu wählen, dass die x-Achse nach rechts, die y-Achse aus der Blattebene heraus und die z-Achse nach unten positiv festgelegt sind.

Wir beginnen wie gewohnt mit einem Freikörperbild, nämlich um die Lagerreaktionen berechnen zu können. Dann stellen wir die Gleichgewichtsbedingungen auf und berechnen alle Auflagerkräfte in A und B. Dabei können wir für die Streckenlast eine Kombination aus Rechtecks- und Dreiecksform und deren entsprechende resultierende Einzellasten verwenden. Wenn das erledigt ist widmen wir uns schließlich der Berechnung der Querkraft über das Integral, genau wie im Theoriebeitrag zu Schnittgrößen besprochen. Natürlich müssen wir uns dazu noch überlegen welche Funktion unsere trapezförmige Streckenlast korrekt beschreibt. Auch hier werden wir wieder bei der Geradengleichung fündig. Im Anschluss an die Querkraft können wir dann das Schnittmoment bestimmen, indem wir einfach die Querkraft noch einmal integrieren. Zum Schluss zeige ich euch auch noch einen alternativen Weg zur Bestimmung des Schnittmoments und wir diskutieren die Wichtigkeit einer Dimensionskontrolle. Alles im Detail findest ihr wie immer im verlinkten Video sowie auch in der angehängten pdf-Datei. Viel Spaß damit!


Auch hier gilt – wie schon bei den vorhergehenden Beispielen zu den Schnittgrößen – dass es sich um ein überaus essentielles Kapitel der Technischen Mechanik handelt. Bei Unklarheiten bitte also unbedingt gleich melden.

Vielen Dank und bis bald,
Markus

Schnittgrößenverlauf berechnen

Herzlich Willkommen!

Ich habe beim letzten Schnittgrößenbeispiel versprochen, dass wir uns als zweites Beispiel zu den Schnittgrößen einen Verlauf ansehen werden. Wir haben ja schon theoretisch diskutiert Schnittgrößen sind und wie wir Schnittufer definieren. Als Brückenbeispiel haben wir dann Schnittgrößen an speziellen Punkten eines Trägers bestimmt. Jetzt wollen wir uns der eigentlich relevanten Herangehensweise, nämlich der Berechnung eines Schnittgrößenverlaufs widmen, nämlich an folgendem Beispiel.

Berechne für den skizzierten Biegeträger die Auflagerreaktionen sowie die Schnittgrößen Q(x) und M(x).

Geg.: q0, l, P=q0*l, M0=q0*l^2

Hinweis: Das Koordinatensystem ist so zu wählen, dass die x-Achse nach rechts, die y-Achse aus der Blattebene heraus und die z-Achse nach unten positiv festgelegt sind.

Schnittgrößenverlauf bedeutet, dass wir Normalkraft, Querkraft und Biegemoment jeweils als Funktion der Laufvariable x entlang des gesamten Trägers berechnen. Wir erhalten also als Ergebnisse Funktionen von x, N(x), Q(x) und M(x) mit deren Hilfe alle Schnittgrößen an jedem beliebigen Punkt entlang des Trägers berechnet werden können. Das ist natürlicher praktischer für die spätere Verwendung. Um das zu erreichen, müssen wir zuerst wieder die Auflagerreaktionen aus dem Gesamtgleichgewicht bestimmen. Anschließend können wir Teilgleichgewichte für die notwendigen Felder aufstellen und daraus die Schnittgrößen berechnen. In diesem konkreten Beispiel benötigen wir 2 Felder, nämlich 0<x<l und l<x<4l, d.h. ein Feld links der Streckenlast und eines im Bereich der Streckenlast. Dann lässt sich für jedes Teilgleichgewicht wieder ein Freikörperbild zeichnen und aus den bekannten Gleichgewichtsbedingungen (Kräfte- und Momentensumme) die Schnittgrößen als Funktion der Laufvariable bestimmen. Wie das detailliert funktioniert besprechen wir wie immer im verlinkten Video. Viel Spaß damit!


Auch hier gilt – wie schon beim Einstiegsbeispiel zu Schnittgrößen – dass es sich um ein überaus essentielles Kapitel der Technischen Mechanik handelt. Bei Fragen scheue also bitte nicht davor zurück, mich jederzeit zu kontaktieren.

Vielen Dank und bis bald,
Markus

Schnittgrößen an spezieller Stelle

Herzlich Willkommen!

Wir haben uns schon theoretisch angesehen was Schnittgrößen sind und wie wir Schnittufer definieren. Als Brückenbeispiel für die Berechnung von Schnittgrößen wollen wir an speziellen Punkten eines Trägers die drei Schnittgrößen Normalkraft, Querkraft und Biegemoment bestimmen. In Zukunft wollen wir eher Verläufe dieser Schnittgrößen bestimmen, also durchgehende Funktionen der Laufvariable (=Trägerlänge). Um diese Herangehensweise allerdings vorzubereiten, sehen wir uns zuerst an wie wir überhaupt Schnittgrößen bestimmen können – eben an speziellen Punkten entlang des Trägers.

Normal- und Querkraft sowie das Biegemoment im Balken an den Stellen C und D sind zu bestimmen. Die Lagerung in B sei ein Rollenlager. Punkt C liege unmittelbar rechts der Last P.
Geg.: P, M, l

Hinweis: Das Koordinatensystem ist so zu wählen, dass die x-Achse nach rechts, die y-Achse aus der Blattebene heraus und die z-Achse nach unten positiv festgelegt sind.

Quelle: Aufgabe 7.6 (S. 407) aus Russell C. Hibbeler, Technische Mechanik 1 Statik, 12. Auflage, 2012 Pearson GmbH, München

Um dieses Beispiel zu lösen müssen wir ebenfalls wieder ein Freikörperbild zeichnen und damit die Lagerreaktionen aus dem Gleichgewicht bestimmen. Wir benötigen also alles bisher in der Statik besprochene auch zur Berechnung von Schnittgrößen. Anschließend können wir den Schnitt durchführen. Wir haben schon einige Male besprochen, dass jedes Teilsystem eines statischen Systems ebenfalls im statischen Gleichgewicht sein muss. Genau diese Tatsache können wir uns zu Nutze machen und für den jeweiligen Schnitt wieder die Gleichgewichtsbedingungen (Kräfte- & Momentengleichgewicht) ansetzen. Dazu zeichnen wir ebenfalls wieder ein Freikörperbild für das geschnittene Teilsystem. Die Schnittgrößen sorgen damit dafür, dass dieses Teilsystem im Gleichgewicht bleibt. Mit dieser Vorgehensweise können wir dann also beide Schnitte an C und D ausführen und deren Schnittgrößen berechnen. Die Details gibt es wie gewohnt im verlinkten Video.


Im nächsten Beispiel werden wir dann diskutieren wie wir die oben besprochene Vorgehensweise zur Berechnung eines analytischen Schnittgrößenverlaufs anwenden können. Bei Fragen und Unklarheiten meldet euch bitte jederzeit gerne. Gerade Schnittgrößen zu verstehen ist essentiell für die Technische Mechanik.

Vielen Dank und bis bald,
Markus