Kreisel als Drehzahlmesser verwenden

Herzlich Willkommen!

Das vorletzte der Beispiele die ich hier nachholen möchte ist ein Kreisel. Konkret wollen wir den Kreisel als Drehzahlmesser verwenden und sehen uns an wie wir das zu Stande bringen können. Die Angabe lautet:

Ein Kreisel kann auch als Drehzahlmesser benutzt werden, nämlich folgendermaßen: In einem Rahmen 1 ist ein Gehäuse 2 reibungsfrei drehbar gelagert und mit einer Drehfeder mit diesem verbunden. Ein im Gehäuse 2 gelagerter Kreisel 3 rotiert mit der relativen Winkelgeschwindigkeit ω_R gegen dieses Gehäuse. Wird nun der Rahmen 1 mit einer konstanten Winkelgeschwindigkeit Ω gedreht, so stellt sich nach einem Einschwingvorgang ein konstant bleibender Winkel ϕ ein und Ω kann bestimmt werden.

Geg.:
Schwerpunkte liegen im Schnittpunkt der Drehachsen
Gehäuse 2: ϕ, Hauptträgheitsmomente I_Gx, I_Gy, I_Gz,
lineare Drehfeder mit Konstante c_T, vollkommen entspannt für ϕ = 0
Kreisel 3: ω_R = const., Trägheitsmomente: I_x, I_y = I_z

Ges.:
Berechne die konstante Winkelgeschwindigkeit Ω des Rahmens 1 nach dem Einschwingvorgang unter der Annahme, dass ω_R viel größer als Ω ist.

Quelle: Aufgabe 4.4.3 (S. 42) aus P. Lugner et al., Technische Mechanik, 1992 Springer-Verlag, Wien

Die Angabe zum Download findet ihr hier:

Auch hier starten wir wieder mit dem Freikörperbild, von dem ihr ja jetzt schon wisst, dass es ein essentieller Bestandteil der technischen Mechanik ist. Nachdem wir uns darüber im Klaren sind wie die Winkelgeschwindigkeiten im gegeben Koordinatensystem wirken, können wir den Drehimpulsvektor anschreiben. Für den Drehimpulssatz benötigen wir die Zeitableitung dieses Drehimpulsvektors, welche hier auf den Kreuzproduktterm (Rotation des Koordinatensystems) beschränkt bleibt, weil wir es mit konstanten Winkelgeschwindigkeiten zu tun haben. Der zweite Term des Drehimpulssatzes ist der Vektor der äußeren Momente. Dabei spielt die gegebene Drehfeder eine Rolle. Nachdem dieser aufgestellt ist, kann der volle Drehimpulssatz angeschrieben und die Vereinfachung für ω_R sehr viel größer als Ω gemacht werden. Zum Abschluss diskutieren wir noch, welche „Drehzahl“ mit einem solchen Gerät typischerweise gemessen wird. Die Rechenschritte im Detail besprechen wir ausführlich im verlinkten YouTube Video. Viel Spaß damit!

Sämtliche Fragen beantworte ich wie immer sehr gerne – schreibt sie mir bitte einfach hier oder auf YouTube als Kommentar.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald,
Markus

Prinzip von d’Alembert: Rollensystem mit Federn

Herzlich Willkommen!

Heute sehen wir uns ein Beispiel zum Prinzip von d’Alembert an.

Gegeben ist das nachfolgend dargestellte schwingungsfähige mechanische System, bestehend aus Rollen, Massen und Federn. Die Masse m wird gehalten und zum Zeitpunkt t=0 losgelassen. Zu Beginn sind alle Federn entspannt.

Geg.:
m, I, c, k, R, r

Ges.:
*Die Winkelkoordinaten φ1, φ2, φ3 als Funktion von x(t)
*Sämtliche Beiträge zum Prinzip von d’Alembert
*Die Bewegungsgleichung des Systems sowie dessen Eigenkreisfrequenz
*Das Bewegungs-Zeit-Gesetz x(t)

Die Angabe gibt es natürlich wieder als Download inkl. Endergebnissen, damit ihr das Beispiel vorab selbst rechnen könnt.

Für die Lösung dieser Aufgabe überlegen wir uns zuerst die Kinematik an den einzelnen Rollen. Dazu nutzen wir zur besseren Veranschaulichung ein Freikörperbilder. Dann sind alle kinematischen Beziehungen aufzustellen. Wir werden feststellen, dass es nur einen Freiheitsgrad im System gibt. Damit können alle kinematischen Größen als Funktion der Variable x(t) ausgedrückt werden und es gibt am Ende auch nur eine Bewegungsgleichung. Um die Bewegungsgleichung zu berechnen nutzen wir das Prinzip von d’Alembert. Dafür ist es wiederum nötig die virtuelle Arbeit von äußeren und inneren Kräften, sowie die virtuelle Arbeit der Trägheitskräfte aufzustellen. Am Ende können wir dann die Bewegungsgleichung lösen und das Bewegungs-Zeit-Gesetz anschreiben. Wie das im Detail funktioniert erkläre ich im untenstehenden YouTube Video.

Wenn ihr Fragen habt schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen schnellstmöglich beantworten.

Hat euch das Video gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Viel Spaß beim Rechnen und bis spätestens Donnerstag zum nächsten Beispiel,
Markus

Kreiseldynamik: Mühlstein

Herzlich Willkommen!

Heute wollen wir uns ein Beispiel aus dem Bereich Kreiseldynamik ansehen, und zwar folgende Mühle:

Die dargestellte Mühle wird mit der Winkelgeschwindigkeit Ω=const. angetrieben. Der Mühlstein habe seinen Schwerpunkt in S, seine Masse sei m und seine Massenträgheitsmomente I1 sowie I2=I3.

Ges.:
*die erforderliche Winkelgeschwindigkeit ω=const., sodass der Mühlstein im Punkt P mit der Geschwindigkeit -vp e2 gleitet.
*die Beschleunigung des Punktes P.
*die Winkelgeschwindigkeit des Mühlsteins im e_1-e_2-e_3 Koordinatensystem.
*die resultierende Einzelkraft und das resultierende Moment bei Reduktion in den Koordinatenursprung.

Die Angabe gibt es als Download inkl. Lösungen um das Beispiel vorab rechnen zu können.

Um diese Aufgabe zu lösen, bedienen wir uns einer Mischung aus Kinematik, Relativkinematik und natürlich Schwerpunkt- und Drehimpulssatz. Zuerst muss bestimmt werden wie groß für gegebenes vp die Winkelgeschwindigkeit ω wird. Dann können wir uns überlegen welche absolute Beschleunigung der Schwerpunkt des Mühlsteins S aufweist. Aus dieser absoluten Beschleunigung lässt sich dann der Schwerpunktsatz anschreiben und die Kräfte berechnen. Zum Schluss bestimmen wir noch den Drehimpuls für den Mühlstein und berechnen aus diesem die Momente. Wie das im Detail funktioniert erkläre ich im angehängten YouTube Video.

Wenn ihr Fragen habt schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen schnellstmöglich beantworten.

Hat euch das Video gefallen? Dann lasst bitte ein Like auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video zu verpassen. Ihr helft mir damit enorm. Vielen Dank!

Bis nächste Woche mit einem weiteren Beispiel,
Markus