Schnittgrößen an spezieller Stelle

Herzlich Willkommen!

Wir haben uns schon theoretisch angesehen was Schnittgrößen sind und wie wir Schnittufer definieren. Als Brückenbeispiel für die Berechnung von Schnittgrößen wollen wir an speziellen Punkten eines Trägers die drei Schnittgrößen Normalkraft, Querkraft und Biegemoment bestimmen. In Zukunft wollen wir eher Verläufe dieser Schnittgrößen bestimmen, also durchgehende Funktionen der Laufvariable (=Trägerlänge). Um diese Herangehensweise allerdings vorzubereiten, sehen wir uns zuerst an wie wir überhaupt Schnittgrößen bestimmen können – eben an speziellen Punkten entlang des Trägers.

Normal- und Querkraft sowie das Biegemoment im Balken an den Stellen C und D sind zu bestimmen. Die Lagerung in B sei ein Rollenlager. Punkt C liege unmittelbar rechts der Last P.
Geg.: P, M, l

Hinweis: Das Koordinatensystem ist so zu wählen, dass die x-Achse nach rechts, die y-Achse aus der Blattebene heraus und die z-Achse nach unten positiv festgelegt sind.

Quelle: Aufgabe 7.6 (S. 407) aus Russell C. Hibbeler, Technische Mechanik 1 Statik, 12. Auflage, 2012 Pearson GmbH, München

Um dieses Beispiel zu lösen müssen wir ebenfalls wieder ein Freikörperbild zeichnen und damit die Lagerreaktionen aus dem Gleichgewicht bestimmen. Wir benötigen also alles bisher in der Statik besprochene auch zur Berechnung von Schnittgrößen. Anschließend können wir den Schnitt durchführen. Wir haben schon einige Male besprochen, dass jedes Teilsystem eines statischen Systems ebenfalls im statischen Gleichgewicht sein muss. Genau diese Tatsache können wir uns zu Nutze machen und für den jeweiligen Schnitt wieder die Gleichgewichtsbedingungen (Kräfte- & Momentengleichgewicht) ansetzen. Dazu zeichnen wir ebenfalls wieder ein Freikörperbild für das geschnittene Teilsystem. Die Schnittgrößen sorgen damit dafür, dass dieses Teilsystem im Gleichgewicht bleibt. Mit dieser Vorgehensweise können wir dann also beide Schnitte an C und D ausführen und deren Schnittgrößen berechnen. Die Details gibt es wie gewohnt im verlinkten Video.


Im nächsten Beispiel werden wir dann diskutieren wie wir die oben besprochene Vorgehensweise zur Berechnung eines analytischen Schnittgrößenverlaufs anwenden können. Bei Fragen und Unklarheiten meldet euch bitte jederzeit gerne. Gerade Schnittgrößen zu verstehen ist essentiell für die Technische Mechanik.

Vielen Dank und bis bald,
Markus

Theorie: Schnittgrößen & Schnittufer

Herzlich Willkommen!

Im heutigen Beitrag wollen wir uns dem Thema Schnittgrößen annähern. Wir diskutieren, dass wir Schnittgrößen brauchen um die inneren Belastungen von Bauteilen zu bestimmen. Außerdem besprechen wir natürlich welche Schnittgrößen es gibt, nämlich Normalkraft, Querkraft und Schnittmoment. Ein zentraler Punkt ist ob es sich bei einem gewählten Schnitt um ein positives oder negatives Schnittufer handelt. Was ein Schnittufer ist und woran sich erkennen lässt ob ein positives oder negatives Schnittufer vorliegt besprechen wir sehr detailliert und wie ich glaube äußerst verständlich. Schließlich sehen wir uns noch an wie für beliebige Streckenlasten die Schnittgrößen durch einfache Integration berechnet werden können und welche Zusammenhänge hier gelten.


Es handelt sich bei den Schnittgrößen um ein äußerst wichtiges und sehr zentrales Thema der technischen Mechanik. Wenn du also das Gefühl hast, hier irgendetwas nicht so ganz verstanden zu haben, dann frag bitte jederzeit gerne nach. Die Basics hier zu verstehen bringt im Verlaufe der Mechanik einen unheimlichen Verständnisvorsprung.

Vielen Dank und bis bald,
Markus

Komplexes Fachwerk: Ritterschnitt, Stabkräfte

Herzlich Willkommen!

Im letzten Beitrag ging es um ein einfaches Fachwerk und wie wir die besprochenen Nullstabregeln anwenden können. Diesmal wollen wir ein komplexeres Fachwerk besprechen und uns auch den sogenannten Ritterschnitt ansehen.

Für das gegebene Fachwerk sollen die Kräfte in den Stäben BC, HC, HG, DC, CF und CG bestimmt werden. Dazu wird das Fachwerk freigeschnitten und eine Gleichgewichtsbedingung zur Berechnung jeder Kraft verwendet. Zudem soll angegeben werden ob die Stäbe unter Zug oder Druck stehen

Quelle: Aufgabe 6.42/6.43 (S. 345) aus Russell C. Hibbeler, Technische Mechanik 1 Statik, 12. Auflage, 2012 Pearson GmbH, München

Um die geforderten Stabkräfte in diesem komplexen Fachwerk bestimmen zu können müssen wir zu Beginn natürlich die Lagerreaktionen berechnen. Das funktioniert durch die statische Bestimmtheit des Systems mittels Gesamtgleichgewicht. Dann können wir uns einen klugen Schnitt durch das gesamte Fachwerk überlegen, einen sog. Ritterschnitt. In unserem Fall verläuft dieser durch die Stäbe BC, HC und HG. Schließlich überlegen wir uns noch, wie wir möglichst Gleichgewichtsbedingungen aufstellen können, die auch direkt Stabkräfte liefern. Das geht deshalb, weil in einem statischen System auch jedes Teilsystem im statischen Gleichgewicht sein muss. Dazu bietet sich ein Punkt in Verlängerung des Stabes HG an, sodass Momentengleichgewichte verwendet werden können. Dafür benötigen wir auch noch ein wenig Geometrie in Form von Dreiecken. Somit lassen sich die drei Stabkräfte im linken Teil berechnen. Für die Stabkräfte im rechten Teil funktioniert die Vorgehensweise vollkommen analog. Wie immer diskutieren wir die Details im verlinkten Video. Viel Spaß!


Sollte es Fragen geben schreib bitte jederzeit gerne einen Kommentar und melde dich auch bei Wünschen zu Beispielen oder mit Verbesserungsvorschlägen.

Vielen Dank und bis bald,
Markus

Einfaches Fachwerk: Nullstäbe & Rundschnitt

Herzlich Willkommen!

Wir schauen uns in diesem Beitrag an, wie wir an einem konkreten Beispiel im Fachwerk Nullstäbe bestimmen können. Die Regeln haben wir ja bereits in der Theorie zu Nullstäben diskutiert. Jetzt wollen wir diese Regeln auch in der Praxis anwenden.

Das dargestellte Fachwerk wird durch eine Kraft P belastet. Identifiziere die Nullstäbe. Wie groß sind die Lagerreaktionen und die Kraft im Stab 4?

Quelle: Aufgabe I.5.1 (S. 24.) aus W. Hauger et al., Aufgaben zu Technische Mechanik 1-3, 7. Auflage, 2012 Springer, Heidelberg

Um die Nullstäbe zu bestimmen, sehen wir uns systematisch die Knoten an und fragen uns ob eine der drei Regeln für Nullstäbe gültig ist. In diesem Beispiel stellen wir fest, dass sich 1, 7 und 9 als Nullstäbe herausstellen. Dann können wir die Lagerreaktionen berechnen und mittels Rundschnitt (freischneiden eines einzelnen Knotens) des linken unteren Knotens die Kraft im Stab 4 bestimmen. Das alles gehen wir Schritt für Schritt im verlinkten Video durch.


Wenn es Fragen gibt schreibt bitte jederzeit gerne einen Kommentar und meldet euch auch bei Wünschen zu Beispielen oder mit Verbesserungsvorschlägen.

Vielen Dank und bis bald,
Markus

Theorie: Nullstäbe im Fachwerk bestimmen

Herzlich Willkommen!

In dieser kurzen Theorieeinheit geht es um wichtige Details bei Fachwerken. Nämlich um die Fragen, was Nullstäbe sind, wie wir diese bestimmen und wozu das gut sein soll. Es gibt dazu drei einfache Regeln, die wir im Video besprechen werden. Außerdem ist wichtig zu wissen, dass uns Nullstäbe zwar die Berechnung des Fachwerks erleichtern, aber aus dem realen Fachwerk nicht einfach entfernt werden dürfen. Warum das so ist und wie das mit den Nullstabregeln funktioniert könnt ihr euch gerne selbst ansehen.


Wenn Fragen offen bleiben, melde dich bitte jederzeit gerne in den Kommentaren und lass mir dort auch Wünsche und Verbesserungsvorschläge da.

Vielen Dank und bis bald,
Markus

Arbeitssatz: Massen mit Rolle und Seil

Herzlich Willkommen!

In diesem Beispiel zum Arbeitssatz sehen wir uns ein Beispiel an, das normalerweise oft mit Schwerpunkt- und Drehimpulssatz gerechnet wird. Hier haben wir es aber zusätzlich auch noch mit Reibung zu tun.

Ein über eine Rolle geführtes Seil verbindet zwei Körper mit den Massen m1 und m2 miteinander. Die Masse m1 ist dabei größer als die Masse m2. Es tritt kein Schlupf auf.

Geg.: Θ0, m1, m2, μ

Bestimme die Geschwindigkeit beider Körper in Abhängigkeit vom Ort, wenn das System aus der Ruhe losgelassen wird.

Die Angabe gibt es wie üblich hier zum Download.

Wir beginnen auch hier wieder mit einem Freikörperbild. Darin vermerken wir nicht nur die Kräfte, sondern auch alle dynamische Größen, d.h. Geschwindigkeiten und Winkelgeschwindigkeiten im System. Danach können wir direkt den Arbeitssatz aufstellen. Die Kinematik im System, also die Abrollbedingung, hilft uns, auch die Winkelgeschwindigkeit als Funktion der translatorischen Geschwindigkeit der Massen auszudrücken. Natürlich müssen wir in diesem Beispiel auch den Reibungseinfluss im Arbeitssatz berücksichtigen, also die Reibkraft zwischen schiefer Ebene und Klotz bestimmen. Die Geschwindigkeit der Massen als Funktion des Ortes lässt sich nach sinnvollem Umformen des Arbeitssatzes dann direkt aus diesem bestimmen. Schritt für Schritt erkläre ich den gesamten Rechenweg im verlinkten Video. Viel Spaß bei der Bearbeitung!

Sollten Fragen auftauchen oder ihr Anmerkungen haben, dann zögert bitte nicht mir hier oder auf YouTube einen Kommentar zu hinterlassen. Ich freue mich immer auf eure Rückmeldungen und beantworte sämtlichen Fragen schnell und gerne.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte unbedingt auch ein Like auf YouTube da und abonniert diesen Blog. Außerdem freue ich mich über ein Abo meines YouTube Kanals! Ihr helft mir damit enorm. Vielen Dank!

Viel Spaß mit dem Beispiel und bis bald,
Markus

Arbeitssatz: Schwingungsfähiges System aus Scheiben und Federn

Herzlich Willkommen!

Hier ist das erste Beispiel zum Arbeits- bzw. Energiesatz. Es lautet folgendermaßen:

Gegeben ist ein schwingungsfähiges System, bestehend aus zwei gleichen Scheiben (Masse m, Massenträgheitsmoment IS um die Drehachse durch den Schwerpunkt, Radius r). Es tritt kein Gleiten zwischen den Scheiben und dem idealen, undehnbaren Seil auf, Lagerungen reibungsfrei. Eine lineare Feder mit Federkonstante k, eine Drehfeder mit Federkonstante cT.

Ges.:
*die Bewegungsgleichung des Systems mit Hilfe des Energiesatzes.
*die Schwingungsdauer des Systems.

Die Angabe gibt es wie üblich hier zum Download.

In diesem Beispiel sollten wir uns zuerst Gedanken über die Kinematik machen. Dadurch verknüpfen wir die Bewegungskoordinate x mit den Rotationen der Rollen und damit auch dem Weg der Drehfeder oben. Außerdem hilft uns eine Betrachtung des Momentanpols der unteren Rolle. Danach lassen sich die kinetische und potentielle Energie sehr einfach hinschreiben. Die Idee des Energiesatzes ist es dann, dass die Energie erhalten bleibt und damit deren zeitliche Ableitung verschwinden muss. Aus diesem Zusammenhang lässt sich die Bewegungsgleichung des Systems bestimmen. Diese ist schon in der Normalform, weshalb wir dann auch die Periodendauer einfach ablesen können. Schritt für Schritt erkläre ich den gesamten Rechenweg wieder im verlinkten Video. Viel Spaß dabei!

Sollten Fragen auftauchen oder ihr Anmerkungen haben, dann zögert bitte nicht mir hier oder auf YouTube einen Kommentar zu hinterlassen. Ich freue mich auf eure Rückmeldungen.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte unbedingt ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal! Ihr helft mir damit enorm. Vielen Dank!

Viel Spaß mit dem Beispiel und bis bald,
Markus

Kreisel: Rotierender Stab mit Drehfeder

Herzlich Willkommen!

Das letzte Beispiel zur Kreiseldynamik ist schon eine ganze Weile her, deshalb wollen wir uns heute wieder einmal ein solches ansehen.

Ein zylindrischer, homogener Stab (kein dünner Stab) ist in einer rotierenden Gabel reibungsfrei drehbar gelagert und über eine Drehfeder mit dieser verbunden.

Geg.:
homogener Stab: Länge l, Durchmesser 2r, Masse m
lineare Drehfeder: Drehfederkonstante cT, vollkommen entspannt bei ϕ=0
Gabel: Winkelgeschwindigkeit Ω, die durch ein entsprechendes Antriebsmoment MA konstant gehalten wird.

Ges.:
*Wie groß darf Ω höchstens sein, damit der Stab für kleine Winkel ϕ eine Schwingung ausführt?
*Welchen Wert muss das Antriebsmoment MA(ϕ) bei reibungsfreier Lagerung der Gabel annehmen. Anfangsbedingung: ϕ=0, ϕ˙=ν

Hinweis: Verwenden Sie die Euler’schen Kreiselgleichungen.

Quelle: Aufgabe 4.4.4 (S. 42) aus P. Lugner et al., Technische Mechanik, 1992 Springer-Verlag, Wien

Die Angabe zum Download gibt es wie gewohnt ihr hier:

Wie immer ist es wichtig sich anhand einer Skizze, d.h. eines Freikörperbilds bewusst zu machen, welche Kräfte und Momente sowie Geschwindigkeiten und Beschleunigungen im System wirken. Dann können wir hier auch schon die Euler’schen Kreiselgleichungen anschreiben, deren einzelne Terme bestimmen und in die allgemeine Form der Gleichungen einsetzen. Dadurch gelangen wir zu einem Gleichungssystem aus dem wir eine Bewegungsgleichung erhalten. Am Ende müssen wir uns noch darüber Gedanken machen, wann es sich bei dieser Bewegungsgleichung um eine Schwingungsgleichung handelt. All das besprechen wir wieder in voller Schönheit im verlinkten Video.

Sämtliche Fragen beantworte ich wie immer sehr gerne – schreibt sie mir bitte einfach hier oder auf YouTube als Kommentar.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald,
Markus

Prinzip von d’Alembert: Brett auf Walzen

Herzlich Willkommen!

Heute sehen wir uns wieder einmal ein Beispiel zum Prinzip von d’Alembert an.

Eine Platte der Masse M ruht auf zwei Walzen, die jeweils die Masse m und den Radius r besitzen. Die linke Walze ist als Vollzylinder, die rechte als dünnwandiger Hohlzylinder ausgeführt.

Ges.:
*Bestimme die Beschleunigung der Platte unter der Annahme, dass kein Gleiten auftritt, mit Hilfe des Prinzips von d’Alembert.

Die Angabe gibt es natürlich wieder als Download inkl. Endergebnissen, damit ihr das Beispiel vorab selbst rechnen könnt.

Diese rechnerisch eher kurze Aufgabe eignet sich sehr gut dazu das Prinzip von d’Alembert genauer zu erklären. Wir diskutieren also welche Beiträge es gibt und woher diese kommen. Außerdem klären wir was es mit den d’Alembert’schen Trägheitstermen und Trägheitskräften auf sich hat. Im Zuge dessen rechnen wir selbstverständlich auch die gefragte Beschleunigung des Brettes aus. Das und noch einiges mehr gibt es wieder im verlinkten YouTube Video zu sehen. Viel Spaß damit!

Wenn ihr Fragen habt schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen schnellstmöglich beantworten.

Hat euch das Video gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Alles Gute und bis bald,
Markus

Kreiseldynamik einer Mischmaschine – Lagerbelastung berechnen

Herzlich Willkommen!

Wir widmen uns wieder einem Kreiselbeispiel. Darin wollen wir heute die Lager einer idealisierten Mischmaschine dynamisch auslegen. Folgendes ist gegeben:

Ein Rotor sei in einem rotierenden Rahmen gelagert. Die Masse des Rotors ist m, seine Massenträgheitsmomente Ix sowie Iy = Iz und seine Winkelgeschwindigkeit relativ zum Rahmen ωR. Für den Rahmen sind die Abmessungen l, der Winkel α sowie seine Winkelgeschwindigkeit Ω und Winkelbeschleunigung Ω˙ gegeben. Alle Lager sind als reibungsfrei anzunehmen.

Ges.:
*Die Bestimmungsgleichungen für die Kräfte auf den Rotor in A und B dargestellt im rahmenfesten x-y-z-System.
*Die relative Winkelbeschleunigung ω˙R des Rotors.

Quelle: Aufgabe 4.4.2 (S. 41) aus P. Lugner et al., Technische Mechanik, 1992 Springer-Verlag, Wien

Die Angabe zum Download findet ihr wie immer hier:

Wie meistens, starten wir mit einem Freikörperbild. Nachdem wir uns darüber im Klaren sind wie die Winkelgeschwindigkeiten im gegeben Koordinatensystem wirken, können wir den Drehimpulsvektor anschreiben. Für den Drehimpulssatz benötigen wir die Zeitableitung dieses Drehimpulsvektors. Diesmal haben wir auch eine nicht verschwindende partielle Zeitableitung. Der zweite Term des Drehimpulssatzes ist der Vektor der äußeren Momente. Die Momente entstehen aus den Lagerkräften und ermöglichen uns damit die Bestimmung eben dieser Lagerkräfte. Am Ende bestimmen wir noch ω_R und stellen fest, dass dessen x-Komponente konstant sein muss. Die Rechenschritte im Detail besprechen wir ausführlich im verlinkten YouTube Video. Viel Spaß damit!

Sämtliche Fragen beantworte ich wie immer sehr gerne – schreibt sie mir bitte einfach hier oder auf YouTube als Kommentar.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald,
Markus