Stoß: Projektil trifft auf Scheibe

Herzlich Willkommen!

Wir widmen uns wieder einem Stoßbeispiel. Dieses Mal geht es um ein Projektil das auf eine aufgehängte Scheibe auftrifft und in diese eindringt.

Ein Projektil der Masse mP dringt mit der Geschwindigkeit vP in die Mantelfläche einer Scheibe der Masse mS unter dem Winkel α zur Horizontalen ein. Unmittelbar vor dem Stoß befindet sich die Scheibe in Ruhe.

Geg.: mP = 7g, mS = 5kg, vP = 800m/s, r = 0.2m, α = 30°

Ges.:
*die Winkelgeschwindigkeit ω′S der Scheibe unmittelbar nach dem Eindringen des Projektils.
*der Winkel θ um den die Scheibe schwingt bis sie ihren Umkehrpunkt erreicht hat.

Quelle: Aufgabe x.x (S. xxx) aus Russell C. Hibbeler, Technische Mechanik 3 Dynamik, 12. Auflage, 2012 Pearson GmbH, München

Die Angabe gibt es wie gewohnt auch zum Download.

In diesem Fall bevorzuge ich die Zerlegung des Systems in Projektil und Scheibe und die Einführung eines inneren Stoßantriebs. So können wir einen Impulssatz für das Projektil anschreiben, das wir als Punktmasse betrachten dürfen. Andererseits lässt sich für die Scheibe ein Drehimpulssatz um das Lager aufstellen. Zusätzlich benötigen wir natürlich noch eine kinematische Bedingungen. Diese ist hier jene des rauen Stoßes, also gleiche Geschwindigkeitsvektoren von Projektil und Eindringpunkt unmittelbar nach dem Stoßvorgang. Damit lässt sich dann die Winkelgeschwindigkeit der Scheibe bestimmen. Schließlich können wir über eine einfach Energiebetrachtung noch den Umkehrpunkt der Schwingung bestimmen. Wie das geht besprechen wir im verlinkten Video im Detail. Viel Spaß damit!

Wie auch schon die letzten Male stelle ich zusätzlich wieder ein pdf mit dem vollständigen Lösungsweg zur Verfügung.

Bei Fragen könnt ihr jederzeit gerne entweder hier oder auf YouTube einen Kommentar hinterlassen. Ich werde alle Kommentare wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte auch ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen und empfehlt mich gerne weiter. Vielen herzlichen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Energiesatz: Rollendes Rad an Feder (Schwingung)

Herzlich Willkommen!

Es geht wieder einmal um den Arbeits- und Energiesatz. Wie schon beim letzten Beispiel zu diesem Thema eigentlich nur um den Energiesatz, denn das System ist konservativ, wie die folgende Angabe zeigt.

Ein Rad mit der Masse m und dem Trägheitsradius is rollt ohne zu gleiten. Im entspannten Zustand hat die Feder die Länge l0 und die Federkonstante c. In der skizzierten Position wird das Rad aus der Ruhe freigegeben.
Geg.: m = 60 kg, is = 0.6 m, r = 1 m, l = 3 m, l0 = 0.5 m, c = 10 N/m, β = 60°

Ges.:
*der allgemeine Ausdruck für die Winkelgeschwindigkeit ω des Rades, nachdem es sich um den Winkel β im Uhrzeigersinn verdreht hat.
*der Zahlenwert für diese Winkelgeschwindigkeit ω.

Die Angabe gibt es natürlich wie gewohnt hier als Download.

Die Lösung dieses Beispiels ist an sich recht kurz, erfordert aber einige Überlegungen zur Geometrie. So müssen wir uns insbesondere Gedanken darüber machen wie sich die Federlänge in Abhängigkeit von der Rollbewegung des Rades ändert. Wenn das erledigt ist und wir uns für eine Betrachtung am Momentanpol des Rades entscheiden, ist alles weitere schnell aufgeschrieben. Es gibt in diesem Fall nur eine kinetische Energie der Rotation und die potentiellen Energien der Feder zu Beginn und am Ende. Damit lässt sich leicht die Winkelgeschwindigkeit des Rades als Funktion des Drehwinkels bestimmen. Die Details dazu findest du wie gehabt im verlinkten Video.


Ich beginne ab diesem Beispiel auch damit pdf-Dateien des Lösungsweges bereitzustellen. Falls das für dich interessant ist, hinterlasse mir gerne einen Kommentar, dann kann ich gerne auch bei schon besprochenen Beispielen solche pdfs nachreichen.

Sollten Fragen auftauchen oder ihr Anmerkungen haben, dann zögert bitte nicht mir hier oder auf YouTube einen Kommentar zu hinterlassen. Ich freue mich immer auf eure Rückmeldungen und beantworte sämtlichen Fragen schnell und gerne.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte unbedingt auch ein Like auf YouTube da und abonniert diesen Blog. Außerdem freue ich mich über ein Abo meines YouTube Kanals! Ihr helft mir damit enorm. Vielen Dank!

Viel Spaß mit dem Beispiel und bis bald,
Markus

Unelastischer Stoß: Punktmasse bleibt in Quader stecken

Herzlich Willkommen!

Im Stoßbeispiel, dass wir uns für heute vornehmen möchten, geht es um ein physikalisches Pendel mit einer Pendelkugel. Diese Pendelkugel wird aus der Ruhe losgelassen und trifft am tiefsten Punkt an eine Wand. Der Stoßvorgang selbst hat dabei eine definierte Stoßziffer ε, ist also weder vollkommen elastisch noch vollkommen plastisch.

Eine Masse m2 stößt vollkommen unelastisch mit der Geschwindigkeit v2 gegen eine ruhende Masse m1, die an zwei gleichlangen, masselosen Pendelstützen aufgehängt ist und verbleibt in ihr. Aus dem Maximalausschlag φ=α soll auf die Geschwindigkeit v2 geschlossen werden, wobei die Wirkungslinie von v2 durch den Schwerpunkt von m1 geht.

Ges.:
*Geschwindigkeit der Massen nach dem Stoß.
*Zusammenhang zwischen dem Winkel α der Umkehrlage und v2
*Energieverlust während dem Stoß

Die Angabe gibt es wie gewohnt zum Download. Somit könnt ihr das Beispiel zuerst selbst rechnen und dann mit der Musterlösung vergleichen.

Zur Lösung dieses Beispiels verwenden wir für den Stoßvorgang selbst eine reine Impulsbilanz, die wir für das Gesamtsystem aufstellen. Nachdem es sich um einen zentrischen Stoß handelt, reicht uns diese Impulsbilanz aus um einen Zusammenhang zwischen der Geschwindigkeit unmittelbar nach dem Stoß mit jener unmittelbar vor dem Stoß herzustellen. Zur Ermittlung des gesuchten Zusammenhangs zwischen der Geschwindigkeit v2 der Punktmasse vor dem Stoß und dem Maximalausschlag der Gesamtmasse danach setzen wir anschließend eine Energieerhaltung an, weil der Schwingvorgang nach dem Stoß ohne Energieverlust passiert. Schließlich können wir den Energieverlust der während des Stoßvorgangs selbst auftritt mittels einer Energiebilanz zwischen den Zeitpunkten unmittelbar vor und unmittelbar nach dem Stoß berechnen. Die Details und weitere Anmerkungen zum Beispiel findet ihr wie immer im verlinkten Video. Viel Freude dabei!

Bei Fragen könnt ihr jederzeit gerne entweder hier oder auf YouTube einen Kommentar hinterlassen. Ich werde alle Kommentare wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte auch ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen und empfehlt mich gerne weiter. Vielen herzlichen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Stoß: Physikalisches Pendel trifft auf Wand

Herzlich Willkommen!

Im Stoßbeispiel, dass wir uns für heute vornehmen möchten, geht es um ein physikalisches Pendel mit einer Pendelkugel. Diese Pendelkugel wird aus der Ruhe losgelassen und trifft am tiefsten Punkt an eine Wand. Der Stoßvorgang selbst hat dabei eine definierte Stoßziffer ε, ist also weder vollkommen elastisch noch vollkommen plastisch.

Das abgebildete Pendel besteht aus einer Vollkugel mit Radius r und Masse mK und einem schlanken Stab mit Länge l und Masse mS. Ein Ende des Stabes ist in A mit Abstand r zur Wand frei drehbar gelagert. Das Pendel wird in der Winkellage θ=θ1 aus der Ruhe freigegeben. Die Stoßziffer ist ε.

Geg.: mK=50kg,mS=20kg,l=2m,r=0.3m,ε=0.6,θ1=0∘

Bestimme den Winkel θ=θ2, bis zu dem das Pendel zurückschwingt nachdem es an der Wand angestoßen ist.

Quelle: Aufgabe 8.52 (S. 582) aus Russell C. Hibbeler, Technische Mechanik 3 Dynamik, 2012 Pearson Deutschland GmbH

Die Angabe gibt es wie gewohnt zum Download. Somit könnt ihr das Beispiel zuerst selbst rechnen und dann mit der Musterlösung vergleichen.

Wir können in diesem Fall die Winkelgeschwindigkeit des Pendels unmittelbar vor dem Stoß mittels Energieerhaltung sehr einfach berechnen. Für den Stoßvorgang selbst ist dann nur noch die Newton’sche Stoßhypothese – also das Verhältnis aus relativer Trennungsgeschwindigkeit zu relativer Annäherungsgeschwindigkeit – relevant, sowie eine kinematische Überlegung aus der wir die Geschwindigkeiten am Stoßpunkt selbst erhalten. Damit lässt sich die Winkelgeschwindigkeit des Pendels unmittelbar nach dem Stoß berechnen. Zum Schluss können wir dann wieder Energieerhaltung anwenden und damit bestimmen wie weit das Pendel zurückschwingt. Schritt für Schritt und anschaulich erklärt gibt es das ganze wieder im verlinkten Video. Viel Spaß dabei!

Bei Fragen könnt ihr jederzeit gerne entweder hier oder auf YouTube einen Kommentar hinterlassen. Ich werde alle Kommentare wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte auch ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen und empfehlt mich gerne weiter. Vielen herzlichen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Arbeitssatz: Massen mit Rolle und Seil

Herzlich Willkommen!

In diesem Beispiel zum Arbeitssatz sehen wir uns ein Beispiel an, das normalerweise oft mit Schwerpunkt- und Drehimpulssatz gerechnet wird. Hier haben wir es aber zusätzlich auch noch mit Reibung zu tun.

Ein über eine Rolle geführtes Seil verbindet zwei Körper mit den Massen m1 und m2 miteinander. Die Masse m1 ist dabei größer als die Masse m2. Es tritt kein Schlupf auf.

Geg.: Θ0, m1, m2, μ

Bestimme die Geschwindigkeit beider Körper in Abhängigkeit vom Ort, wenn das System aus der Ruhe losgelassen wird.

Die Angabe gibt es wie üblich hier zum Download.

Wir beginnen auch hier wieder mit einem Freikörperbild. Darin vermerken wir nicht nur die Kräfte, sondern auch alle dynamische Größen, d.h. Geschwindigkeiten und Winkelgeschwindigkeiten im System. Danach können wir direkt den Arbeitssatz aufstellen. Die Kinematik im System, also die Abrollbedingung, hilft uns, auch die Winkelgeschwindigkeit als Funktion der translatorischen Geschwindigkeit der Massen auszudrücken. Natürlich müssen wir in diesem Beispiel auch den Reibungseinfluss im Arbeitssatz berücksichtigen, also die Reibkraft zwischen schiefer Ebene und Klotz bestimmen. Die Geschwindigkeit der Massen als Funktion des Ortes lässt sich nach sinnvollem Umformen des Arbeitssatzes dann direkt aus diesem bestimmen. Schritt für Schritt erkläre ich den gesamten Rechenweg im verlinkten Video. Viel Spaß bei der Bearbeitung!

Sollten Fragen auftauchen oder ihr Anmerkungen haben, dann zögert bitte nicht mir hier oder auf YouTube einen Kommentar zu hinterlassen. Ich freue mich immer auf eure Rückmeldungen und beantworte sämtlichen Fragen schnell und gerne.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte unbedingt auch ein Like auf YouTube da und abonniert diesen Blog. Außerdem freue ich mich über ein Abo meines YouTube Kanals! Ihr helft mir damit enorm. Vielen Dank!

Viel Spaß mit dem Beispiel und bis bald,
Markus

Exzentrischer Stoß zweier quadratischer Scheiben

Herzlich Willkommen!

Diesmal sehen wir uns einen exzentrischen aber ebenen Stoß zweier quadratischer Scheiben an und überlegen uns, wie ein effizienter Rechenweg für ein solches Problem aussehen kann.

Zwei quadratische Scheiben bewegen sich nicht rotierend und reibungsfrei in der xy-Ebene so aufeinander zu, dass sie genau in den Eckpunkten B1 und B2 zusammenstoßen, wobei die Stoßnormale n=ex sein soll. Die Stoßziffer sei ε. Zusätzlich gegeben sind die eingezeichneten Geschwindigkeiten v1,v2,φ˙1,φ˙2 unmittelbar vor dem Stoß, sowie die Massen der Scheiben m1 und m2.

Ges.:
*Die translatorischen Geschwindigkeiten der Scheibenschwerpunkte v′S1, v′S2, sowie die Winkelgeschwindigkeiten φ˙′1, φ˙′2 der Scheiben unmittelbar nach dem Stoß.

Quelle: Aufgabe 2 (S. 320f.) aus S. Kessel, Technische Mechanik Aufgabensammlung mit Musterlösungen, 2000 Universität Dortmund

Die Angabe gibt es wie gewohnt zum Download. Somit könnt ihr das Beispiel zuerst selbst rechnen und dann mit der Musterlösung vergleichen.

In diesem Problem bewegen sich beide Scheiben vor dem Stoß rein translatorisch aufeinander zu. Nachdem sie aber im Punkt B – also exzentrisch – Stoßen, werde nach dem Stoßvorgang beide Scheiben eine Winkelgeschwindigkeit aufweisen. Außerdem ist zu berücksichtigen, dass wir die Vorzeichen der Geschwindigkeiten und Stoßantriebe korrekt übernehmen. Ich rate in diesem Fall immer dazu zuerst die Geschwindigkeiten positiv anzusetzen und erst nachträglich das tatsächliche Vorzeichen in die Gleichungen einzusetzen. Dadurch passieren meiner Erfahrung nach wesentlich weniger Vorzeichenfehler. Als grundlegende Gleichungen verwenden wir in diesem Problem die Impuls- und Drehimpulssätze der beiden Scheiben, sowie die Stoßhypothese in Kombination mit ebener Kinematik. Die Kinematik ist notwendig, da wir die Stoßhypothese bekanntlich im Stoßpunkt – also hier in B – ansetzen müssen. Die Geschwindigkeit im Punkt B nach dem Stoß ist allerdings durch die Drehbewegung eine andere als im Schwerpunkt. Hier also bitte um besondere Vorsicht. Ich schlage vor ihr seht euch wie gewohnt das verlinkte Video an. Viel Spaß damit!

Bei Fragen könnt ihr jederzeit gerne entweder hier oder auf YouTube einen Kommentar hinterlassen. Ich werde alle Kommentare wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte auch ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen und empfehlt mich gerne weiter. Vielen herzlichen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Arbeitssatz: Schwingungsfähiges System aus Scheiben und Federn

Herzlich Willkommen!

Hier ist das erste Beispiel zum Arbeits- bzw. Energiesatz. Es lautet folgendermaßen:

Gegeben ist ein schwingungsfähiges System, bestehend aus zwei gleichen Scheiben (Masse m, Massenträgheitsmoment IS um die Drehachse durch den Schwerpunkt, Radius r). Es tritt kein Gleiten zwischen den Scheiben und dem idealen, undehnbaren Seil auf, Lagerungen reibungsfrei. Eine lineare Feder mit Federkonstante k, eine Drehfeder mit Federkonstante cT.

Ges.:
*die Bewegungsgleichung des Systems mit Hilfe des Energiesatzes.
*die Schwingungsdauer des Systems.

Die Angabe gibt es wie üblich hier zum Download.

In diesem Beispiel sollten wir uns zuerst Gedanken über die Kinematik machen. Dadurch verknüpfen wir die Bewegungskoordinate x mit den Rotationen der Rollen und damit auch dem Weg der Drehfeder oben. Außerdem hilft uns eine Betrachtung des Momentanpols der unteren Rolle. Danach lassen sich die kinetische und potentielle Energie sehr einfach hinschreiben. Die Idee des Energiesatzes ist es dann, dass die Energie erhalten bleibt und damit deren zeitliche Ableitung verschwinden muss. Aus diesem Zusammenhang lässt sich die Bewegungsgleichung des Systems bestimmen. Diese ist schon in der Normalform, weshalb wir dann auch die Periodendauer einfach ablesen können. Schritt für Schritt erkläre ich den gesamten Rechenweg wieder im verlinkten Video. Viel Spaß dabei!

Sollten Fragen auftauchen oder ihr Anmerkungen haben, dann zögert bitte nicht mir hier oder auf YouTube einen Kommentar zu hinterlassen. Ich freue mich auf eure Rückmeldungen.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte unbedingt ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal! Ihr helft mir damit enorm. Vielen Dank!

Viel Spaß mit dem Beispiel und bis bald,
Markus

Stoß: Stabkette trifft auf Anschlag

Herzlich Willkommen!

Im aktuellen Stoßproblem geht es um eine Stabkette aus zwei Stäben, deren oberer Stab beim Stoßvorgang von einem Anschlag gefangen wird. Dadurch wird seine gesamte Energie vom Anschlag aufgenommen, d.h. dissipiert.

Eine aus zwei gleichen, homogenen Stäben bestehende Stabkette trifft in gestreckter Lage mit der Winkelgeschwindigkeit ω auf einen Anschlag B. Nach dem vollkommen plastischen Stoß bleibt der Stab 1 in Ruhe, was für den Stab 2 eine plötzliche Fixierung der Achse 0 bedeutet.

Geg.:
*Abmessungen l, λl
*Masse m der homogenen, dünnen Stäbe
*Winkelgeschwindigkeit ω unmittelbar vor dem Stoß.

Ges.:
*Winkelgeschwindigkeit ω′ des Stabes 2 unmittelbar nach dem Stoß.
*Stoßantrieb SA im Lager A
*Welchen Wert muss λ haben, damit das Lager A stoßfrei bleibt (SA=0)?
*Energieverlust beim Stoß

Quelle: Aufgabe 4.6.5 (S. 49) aus P. Lugner et al., Technische Mechanik, 1992 Springer-Verlag, Wien

Die Angabe gibt es wie gewohnt als Download inkl. Endergebnissen. Ihr könnt damit das Beispiel zuerst selbst rechnen und dann mit meiner Musterlösung vergleichen.

Wir können dieses Problem auf zwei Arten berechnen. Einerseits können wir die Stabkette als ganzes betrachten und andererseits können wir die beiden Stäbe im Gelenk trennen und als getrennte Systeme ansehen. Ich habe mich hier für die zweitere Variante entschieden, weil ich denke, dass diese einfacher nachvollziehbar ist.
Probiert aber natürlich gerne auch die erste Variante aus und überprüft ob die Ergebnisse übereinstimmen. Wichtig ist, dass der obere Stab dann als masselos angenommen werden muss, da ja seine gesamte Rotationsenergie dissipiert wird.
In der getrennten Variante stellen wir einfach Impuls- und Drehimpulssätze für die beiden Stäbe auf. Dabei ist zu beachten, dass sich der Drehpunkt während des Stoßvorgangs ändert. Vor dem Stoß liegt der Drehpunkt im Lager A, nach dem Stoß im Punkt 0. Das ist natürlich relevant für die Kinematik im System. Am besten ihr seht euch wie gewohnt das verlinkte Video an um die ausführliche Erklärung zu erhalten. Viel Spaß damit!

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Stoß zweier Quader inkl. Reibung

Herzlich Willkommen!

Wir wollen uns diesmal einen Stoß zweier Quader ansehen. Bevor jedoch der Stoß passiert wird einer der beiden Quader von einer Feder angestoßen und rutscht reibungsbehaftet eine schiefe Ebene hinab. Nach dem Stoßvorgang rutschen beide Quader reibungsbehaftet weiter bis sie zum Stillstand kommen.

Der Quader A mit der Masse mA wird von einer um den Federweg x vorgespannten Feder mit Federkonstante c abgestoßen und rutscht über eine raue schiefe Ebene mit Steigungswinkel α auf eine raue horizontale Bahn mit Reibungskoeffizient μ für beide Flächen. Dort stößt der Quader A auf einen ruhenden Quader B mit der Masse mB, wobei die Stoßzahl ε beträgt.

Geg.:
mA=100kg, mB=50kg, c=4000N/m, x=0.3m, α=20°, μ=0.2, s1=10m, s2=3m, ε=0.6

Ges.:
*Geschwindigkeit beider Quader unmittelbar nach dem Stoß.
*Entfernung von der Stoßstelle in der die beiden Quader zur Ruhe kommen.

Quelle: Aufgabe D27 (S. 339f.) aus J. Berger, Klausurentrainer Technische Mechanik, 2. Auflage, 2008 Vieweg+Teubner, Wiesbaden

Die Angabe gibt es natürlich auch als Download inkl. Endergebnissen. Ihr könnt damit das Beispiel zuerst selbst rechnen und dann mit meiner Musterlösung vergleichen.

Bevor der Stoßvorgang selbst berechnet werden kann, müssen wir uns einerseits der Energieerhaltung (Federvorspannung) und andererseits dem Arbeitssatz (rutschen auf der reibungsbehafteten Fläche) bedienen. Der Stoßvorgang selbst kann entweder mittels innerem Stoßantrieb (Zerlegung des Vorgangs in zwei einzelne Quader) oder für das Gesamtsystem berechnet werden. Wir sehen uns hier beide Möglichkeiten an und vergleichen diese. Nach dem Stoßvorgang nutzen wir abermals den Arbeitssatz um die Strecken zu berechnen, welche die beiden Quader bis zum Stillstand weiterrutschen. Die Details gibt es wie immer im Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Kreisel: Rotierender Stab mit Drehfeder

Herzlich Willkommen!

Das letzte Beispiel zur Kreiseldynamik ist schon eine ganze Weile her, deshalb wollen wir uns heute wieder einmal ein solches ansehen.

Ein zylindrischer, homogener Stab (kein dünner Stab) ist in einer rotierenden Gabel reibungsfrei drehbar gelagert und über eine Drehfeder mit dieser verbunden.

Geg.:
homogener Stab: Länge l, Durchmesser 2r, Masse m
lineare Drehfeder: Drehfederkonstante cT, vollkommen entspannt bei ϕ=0
Gabel: Winkelgeschwindigkeit Ω, die durch ein entsprechendes Antriebsmoment MA konstant gehalten wird.

Ges.:
*Wie groß darf Ω höchstens sein, damit der Stab für kleine Winkel ϕ eine Schwingung ausführt?
*Welchen Wert muss das Antriebsmoment MA(ϕ) bei reibungsfreier Lagerung der Gabel annehmen. Anfangsbedingung: ϕ=0, ϕ˙=ν

Hinweis: Verwenden Sie die Euler’schen Kreiselgleichungen.

Quelle: Aufgabe 4.4.4 (S. 42) aus P. Lugner et al., Technische Mechanik, 1992 Springer-Verlag, Wien

Die Angabe zum Download gibt es wie gewohnt ihr hier:

Wie immer ist es wichtig sich anhand einer Skizze, d.h. eines Freikörperbilds bewusst zu machen, welche Kräfte und Momente sowie Geschwindigkeiten und Beschleunigungen im System wirken. Dann können wir hier auch schon die Euler’schen Kreiselgleichungen anschreiben, deren einzelne Terme bestimmen und in die allgemeine Form der Gleichungen einsetzen. Dadurch gelangen wir zu einem Gleichungssystem aus dem wir eine Bewegungsgleichung erhalten. Am Ende müssen wir uns noch darüber Gedanken machen, wann es sich bei dieser Bewegungsgleichung um eine Schwingungsgleichung handelt. All das besprechen wir wieder in voller Schönheit im verlinkten Video.

Sämtliche Fragen beantworte ich wie immer sehr gerne – schreibt sie mir bitte einfach hier oder auf YouTube als Kommentar.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald,
Markus