Lagrange: Schwingung eines physikalischen Doppelpendels

Herzlich Willkommen!

Ich möchte die Gelegenheit nutzen und in den nächsten Tagen Beiträge zu bereits vor dem Neustart des Blogs veröffentlichten Videos nachholen. Wir beginnen mit einem Beispiel zur Lagrange-Mechanik, nämlich dem physikalischen Doppelpendel.

Ein ebenes physikalisches Doppelpendel aus schlanken Stäben mit den Angaben laut Skizze (Stablängen a, Massen m1, m2, Schwerpunktsabstände s1, s2 und Pendelwinkel φ1, φ2) soll betrachtet werden.

Ges.:
*Lagrange-Funktion des Systems.
*Bewegungsgleichungen in den generalisierten Koordinaten φ1 und φ2.
*Wie kann der Spezialfall erreicht werden, dass das unter Pendel keine Relativbewegung zum oberen Pendel vollführt, das System also als einfaches Pendel schwingt?

Die Angabe gibt es auch hier wieder als Download inkl. Endergebnissen. Ihr könnt also das Beispiel zuerst selbst rechnen und dann mit meiner Musterlösung vergleichen.

Wie in der Lagrange-Mechanik üblich stellen wir zuerst die relevanten Koordinaten als Funktion der generalisierten Koordinaten auf. Anschließend können diese Koordinaten nach der Zeit abgeleitet werden um die Geschwindigkeiten zu bestimmen. Die Berechnung der kinetischen und potentiellen Energie des Systems führt schließlich zur Lagrange-Funktion. Über die Euler-Lagrange-Gleichung lassen sich dann die Bewegungsgleichungen berechnen. Am Ende des Beispiels überlegen wir uns wie der Spezialfall einer einfachen Pendelschwingung erreicht werden kann. An dieser Stelle gibt es auch eine spannende historische Anmerkung. Wie die Rechnung detailliert abläuft erkläre ich euch im verlinkten YouTube Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Viel Spaß mit diesem Lagrange Beispiel und bis demnächst,
Markus

Prinzip von d’Alembert: Rollensystem mit Federn

Herzlich Willkommen!

Heute sehen wir uns ein Beispiel zum Prinzip von d’Alembert an.

Gegeben ist das nachfolgend dargestellte schwingungsfähige mechanische System, bestehend aus Rollen, Massen und Federn. Die Masse m wird gehalten und zum Zeitpunkt t=0 losgelassen. Zu Beginn sind alle Federn entspannt.

Geg.:
m, I, c, k, R, r

Ges.:
*Die Winkelkoordinaten φ1, φ2, φ3 als Funktion von x(t)
*Sämtliche Beiträge zum Prinzip von d’Alembert
*Die Bewegungsgleichung des Systems sowie dessen Eigenkreisfrequenz
*Das Bewegungs-Zeit-Gesetz x(t)

Die Angabe gibt es natürlich wieder als Download inkl. Endergebnissen, damit ihr das Beispiel vorab selbst rechnen könnt.

Für die Lösung dieser Aufgabe überlegen wir uns zuerst die Kinematik an den einzelnen Rollen. Dazu nutzen wir zur besseren Veranschaulichung ein Freikörperbilder. Dann sind alle kinematischen Beziehungen aufzustellen. Wir werden feststellen, dass es nur einen Freiheitsgrad im System gibt. Damit können alle kinematischen Größen als Funktion der Variable x(t) ausgedrückt werden und es gibt am Ende auch nur eine Bewegungsgleichung. Um die Bewegungsgleichung zu berechnen nutzen wir das Prinzip von d’Alembert. Dafür ist es wiederum nötig die virtuelle Arbeit von äußeren und inneren Kräften, sowie die virtuelle Arbeit der Trägheitskräfte aufzustellen. Am Ende können wir dann die Bewegungsgleichung lösen und das Bewegungs-Zeit-Gesetz anschreiben. Wie das im Detail funktioniert erkläre ich im untenstehenden YouTube Video.

Wenn ihr Fragen habt schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen schnellstmöglich beantworten.

Hat euch das Video gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Viel Spaß beim Rechnen und bis spätestens Donnerstag zum nächsten Beispiel,
Markus

Kreiseldynamik: Mühlstein

Herzlich Willkommen!

Heute wollen wir uns ein Beispiel aus dem Bereich Kreiseldynamik ansehen, und zwar folgende Mühle:

Die dargestellte Mühle wird mit der Winkelgeschwindigkeit Ω=const. angetrieben. Der Mühlstein habe seinen Schwerpunkt in S, seine Masse sei m und seine Massenträgheitsmomente I1 sowie I2=I3.

Ges.:
*die erforderliche Winkelgeschwindigkeit ω=const., sodass der Mühlstein im Punkt P mit der Geschwindigkeit -vp e2 gleitet.
*die Beschleunigung des Punktes P.
*die Winkelgeschwindigkeit des Mühlsteins im e_1-e_2-e_3 Koordinatensystem.
*die resultierende Einzelkraft und das resultierende Moment bei Reduktion in den Koordinatenursprung.

Die Angabe gibt es als Download inkl. Lösungen um das Beispiel vorab rechnen zu können.

Um diese Aufgabe zu lösen, bedienen wir uns einer Mischung aus Kinematik, Relativkinematik und natürlich Schwerpunkt- und Drehimpulssatz. Zuerst muss bestimmt werden wie groß für gegebenes vp die Winkelgeschwindigkeit ω wird. Dann können wir uns überlegen welche absolute Beschleunigung der Schwerpunkt des Mühlsteins S aufweist. Aus dieser absoluten Beschleunigung lässt sich dann der Schwerpunktsatz anschreiben und die Kräfte berechnen. Zum Schluss bestimmen wir noch den Drehimpuls für den Mühlstein und berechnen aus diesem die Momente. Wie das im Detail funktioniert erkläre ich im angehängten YouTube Video.

Wenn ihr Fragen habt schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen schnellstmöglich beantworten.

Hat euch das Video gefallen? Dann lasst bitte ein Like auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video zu verpassen. Ihr helft mir damit enorm. Vielen Dank!

Bis nächste Woche mit einem weiteren Beispiel,
Markus

Relativkinetik: Masse auf rotierendem Winkelhebel

Herzlich Willkommen!

Heute wollen wir uns ein Beispiel aus der Relativkinetik ansehen. Die Angabe dazu lautet folgendermaßen:

Im betrachteten Augenblick wird eine Punktmasse m durch ein Seil mit der Geschwindigkeit v=const. gegen den gegebenen Winkelhebel bewegt. Der Winkelhebel seinerseits dreht sich mit ω=const. um die Achse durch 0.

Geg.:
l, s, v=const., ω=const., m

Ges.:
*Absolutbeschleunigung der Masse m dargestellt im mitrotierenden e_1, e_2, e_3-Koordinatensystem mit Hilfe der Kinematik der Relativbewegung.
*Kräfte auf die Masse m von Seil und Stange bei reibungsfreier Führung.

Um diese Aufgabe lösen zu können, müssen wir die Kinematik der Relativbewegung nutzen. In einem ersten Schritt bestimmen wir die absolute Beschleunigung der Masse. Anschließend wenden wir den Schwerpunktsatz an um die Kräfte auf die Masse zu berechnen. Wie das genau geht, erkläre ich ausführlich im aktuellen YouTube Video.

Wenn ihr Fragen habt schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen schnellstmöglich beantworten.

Hat euch das Video gefallen? Dann lasst bitte ein Like auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video zu verpassen. Ihr helft mir damit enorm. Vielen Dank!

Bis bald mit dem nächsten Beispiel,
Markus