Energiesatz: Rollendes Rad an Feder (Schwingung)

Herzlich Willkommen!

Es geht wieder einmal um den Arbeits- und Energiesatz. Wie schon beim letzten Beispiel zu diesem Thema eigentlich nur um den Energiesatz, denn das System ist konservativ, wie die folgende Angabe zeigt.

Ein Rad mit der Masse m und dem Trägheitsradius is rollt ohne zu gleiten. Im entspannten Zustand hat die Feder die Länge l0 und die Federkonstante c. In der skizzierten Position wird das Rad aus der Ruhe freigegeben.
Geg.: m = 60 kg, is = 0.6 m, r = 1 m, l = 3 m, l0 = 0.5 m, c = 10 N/m, β = 60°

Ges.:
*der allgemeine Ausdruck für die Winkelgeschwindigkeit ω des Rades, nachdem es sich um den Winkel β im Uhrzeigersinn verdreht hat.
*der Zahlenwert für diese Winkelgeschwindigkeit ω.

Die Angabe gibt es natürlich wie gewohnt hier als Download.

Die Lösung dieses Beispiels ist an sich recht kurz, erfordert aber einige Überlegungen zur Geometrie. So müssen wir uns insbesondere Gedanken darüber machen wie sich die Federlänge in Abhängigkeit von der Rollbewegung des Rades ändert. Wenn das erledigt ist und wir uns für eine Betrachtung am Momentanpol des Rades entscheiden, ist alles weitere schnell aufgeschrieben. Es gibt in diesem Fall nur eine kinetische Energie der Rotation und die potentiellen Energien der Feder zu Beginn und am Ende. Damit lässt sich leicht die Winkelgeschwindigkeit des Rades als Funktion des Drehwinkels bestimmen. Die Details dazu findest du wie gehabt im verlinkten Video.


Ich beginne ab diesem Beispiel auch damit pdf-Dateien des Lösungsweges bereitzustellen. Falls das für dich interessant ist, hinterlasse mir gerne einen Kommentar, dann kann ich gerne auch bei schon besprochenen Beispielen solche pdfs nachreichen.

Sollten Fragen auftauchen oder ihr Anmerkungen haben, dann zögert bitte nicht mir hier oder auf YouTube einen Kommentar zu hinterlassen. Ich freue mich immer auf eure Rückmeldungen und beantworte sämtlichen Fragen schnell und gerne.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte unbedingt auch ein Like auf YouTube da und abonniert diesen Blog. Außerdem freue ich mich über ein Abo meines YouTube Kanals! Ihr helft mir damit enorm. Vielen Dank!

Viel Spaß mit dem Beispiel und bis bald,
Markus

Lagrange: Dynamik eines hochgeworfenen Seils

Herzlich Willkommen!

Ein sehr interessantes – und oft in der analytischen Mechanik anzutreffendes – Beispiel ist jenes, das wir uns in diesem Beitrag genauer ansehen wollen.

Ein Seil der Länge l wird senkrecht in die Luft geworfen. Es sei voll beweglich, sodass der Knick frei über das Seil laufen kann. Die Seilmasse pro Längeneinheit sei ρ. Die Krümmung der Knickstelle ist als vernachlässigbar anzusehen, d.h. die relevante Bewegung findet nur in x-Richtung statt.

Ges.:
*Finde geeignete generalisierte Koordinaten und stelle die Lagrangefunktion des Systems auf.
*Leite die Bewegungsgleichungen der generalisierten Koordinaten her.
*Wie verhält sich die Geschwindigkeit der Knickstelle, wenn diese das Seilende erreicht?

Die Angabe gibt es wie üblich als Download, damit du dir das Beispiel in Ruhe selbst ansehen kannst.

Auch hier braucht es zu Beginn einen Ansatz für die generalisierten Koordinaten bzw. die Koordinaten der Schwerpunkte der beiden Teilstücke des Seils. Dabei hilft uns wieder eine Zwangsbedingung, nämlich jene konstanter Seillänge. Dann erhalten wir aus den Koordinaten durch Zeitableitung wieder die Geschwindigkeiten der Seilschwerpunkte. Vorsicht ist hier beim Aufstellen der Energien geboten. Nachdem die Knickstelle des Seils ja wandern soll, muss auch die Masse der Teilstücke sich verändern. Wir haben es also erstmals mit einer zeitabhängigen Masse in der kinetischen Energie zu tun. Diese lässt sich allerdings mit der gegebenen Seilmasse pro Längeneinheit relativ einfach aufstellen. Ähnlich gehen wir bei der potentiellen Energie vor, sodass wir schließlich die Lagrangefunktion anschreiben können. Im nächsten Schritt bestimmen wir die Bewegungsgleichungen der Seilenden und können daraus schließlich eine geschlossene Differentialgleichung bauen. Dann wollen wir aber auch noch wissen, wie sich die Geschwindigkeit der Knickstelle verhält. Durch kluge Substitution finden wir eine sehr einfache Differentialgleichung die sich mit ein wenig Aufwand lösen lässt. Schließlich erhalten wir eine sehr einfach Gleichung für die Geschwindigkeit der Knickstelle. Daran ist abzulesen was passiert, wenn wir ein Seilende erreichen. Allerdings möchte ich das hier noch nicht verraten, sondern die Spannung ein wenig aufrecht erhalten. Um das Phänomen zu erfahren das wir hier mathematisch abgeleitet haben, musst du dir schon das Video ansehen. Viel Spaß damit!

Unterstütze bitte meine Arbeit durch ein Like und eine Weiterempfehlung der Website und meines YouTube Kanals. Falls du es noch nicht getan hast, verhilfst du mir außerdem mit einem Abo zu mehr Sichtbarkeit. Vielen Dank vorab!

Viel Spaß mit diesem etwas aufwändigeren Beispiel und bis bald,
Markus

Unelastischer Stoß: Punktmasse bleibt in Quader stecken

Herzlich Willkommen!

Im Stoßbeispiel, dass wir uns für heute vornehmen möchten, geht es um ein physikalisches Pendel mit einer Pendelkugel. Diese Pendelkugel wird aus der Ruhe losgelassen und trifft am tiefsten Punkt an eine Wand. Der Stoßvorgang selbst hat dabei eine definierte Stoßziffer ε, ist also weder vollkommen elastisch noch vollkommen plastisch.

Eine Masse m2 stößt vollkommen unelastisch mit der Geschwindigkeit v2 gegen eine ruhende Masse m1, die an zwei gleichlangen, masselosen Pendelstützen aufgehängt ist und verbleibt in ihr. Aus dem Maximalausschlag φ=α soll auf die Geschwindigkeit v2 geschlossen werden, wobei die Wirkungslinie von v2 durch den Schwerpunkt von m1 geht.

Ges.:
*Geschwindigkeit der Massen nach dem Stoß.
*Zusammenhang zwischen dem Winkel α der Umkehrlage und v2
*Energieverlust während dem Stoß

Die Angabe gibt es wie gewohnt zum Download. Somit könnt ihr das Beispiel zuerst selbst rechnen und dann mit der Musterlösung vergleichen.

Zur Lösung dieses Beispiels verwenden wir für den Stoßvorgang selbst eine reine Impulsbilanz, die wir für das Gesamtsystem aufstellen. Nachdem es sich um einen zentrischen Stoß handelt, reicht uns diese Impulsbilanz aus um einen Zusammenhang zwischen der Geschwindigkeit unmittelbar nach dem Stoß mit jener unmittelbar vor dem Stoß herzustellen. Zur Ermittlung des gesuchten Zusammenhangs zwischen der Geschwindigkeit v2 der Punktmasse vor dem Stoß und dem Maximalausschlag der Gesamtmasse danach setzen wir anschließend eine Energieerhaltung an, weil der Schwingvorgang nach dem Stoß ohne Energieverlust passiert. Schließlich können wir den Energieverlust der während des Stoßvorgangs selbst auftritt mittels einer Energiebilanz zwischen den Zeitpunkten unmittelbar vor und unmittelbar nach dem Stoß berechnen. Die Details und weitere Anmerkungen zum Beispiel findet ihr wie immer im verlinkten Video. Viel Freude dabei!

Bei Fragen könnt ihr jederzeit gerne entweder hier oder auf YouTube einen Kommentar hinterlassen. Ich werde alle Kommentare wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte auch ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen und empfehlt mich gerne weiter. Vielen herzlichen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Statik: Winkelträger mit Streckenlast

Herzlich Willkommen!

Wie behandeln wir einen Winkelträger in Kombination mit einer Streckenlast? Im Grund wissen wir das bereits aus vergangenen Beispielen. Wir müssen lediglich die drei Konzepte Gleichgewichtsbedingungen, Streckenlast und Gerberträger miteinander kombinieren. Genau das wollen wir hier tun. Es geht dabei um folgendes Beispiel:

Die Auflagerreaktionen in den Lagern A und C des Tragwerks aus Balken und Winkelträger sind zu bestimmen.
Geg.: q,l

Quelle: Aufgabe 6.75 (S. 352) aus Russell C. Hibbeler, Technische Mechanik 1 Statik, 12. Auflage, 2012 Pearson GmbH, München

Auch in diesem Fall eines Winkelträgers können wir wie im Beispiel zum Gerberträger besprochen, das System an den Gelenken trennen und einzelne Gleichgewichte für den oberen und den unteren Teil anschreiben. Für diese beiden Teile lassen sich jeweils die Gleichgewichtsbedingungen (Kräftegleichgewicht und Momentengleichgewicht) anschreiben und schließlich alle unbekannten Größen berechnen. Zum Schluss diskutieren wir noch den auftretenden Zweikraftstab zwischen B und C. Den kompletten Rechenweg im Detail findest du wie gewohnt im verlinkten Video! Viel Spaß und aufschlussreiche Erkenntnisse damit!


Sollten Fragen auftauchen schreibt mir bitte unbedingt hier oder auf YouTube einen Kommentar. Wie ihr hoffentlich in der Vergangenheit gesehen habt, versuche ich alle Fragen verständlich zu beantworten. Auch eine scheinbar einfache Frage ist besser wenn sie geklärt wird. Scheut also bitte nicht davor zurück zu Fragen.

Vielen Dank und bis bald,
Markus

Relativkinetik: Person auf Platte & Rollen

Herzlich Willkommen!

Wir sehen uns in diesem Beitrag ein Beispiel zur Relativkinetik an, welches ein wenig unüblich ist. Warum, das werden wir im Verlauf des Beispiels klären.

Ein Mann der Masse m1 bewegt sich lt. Skizze mit konstanter Relativbeschleunigung arel auf einem Brett der Masse m2. Das Brett liegt auf zwei Rollen mit jeweils Radius r, Masse m3 und Massenträgheitsmoment J. Die Walzen stützen sich am Boden ab und rollen bei der Bewegung ohne zu rutschen.

Geg.: arel, m1, m2, m3, J, r

Bestimme:
*die Absolutgeschwindigkeit v2(t) des Brettes. Dabei gilt v2(t=0)=0.
*die Absolutgeschwindigkeit v1(t) des Mannes.

Quelle: Aufgabe D33 (S. 353f) aus J. Berger, Klausurentrainer Technische Mechanik, 2008, Vieweg+Teubner, Wiesbaden

Und wie immer die Angabe zum Download:

Die Andersartigkeit dieses Beispiels liegt daran, dass es sinnvoll ist Schwerpunkt- und Momentensätze als Ausgangspunkt für die Berechnung zu verwenden, ähnlich wie im Beispiel Block rutscht auf Keil. Sonst gehen wir ja in der Relativkinetik oft von den Geschwindigkeits- und Beschleunigungszusammenhängen aus und nutzen erst zum Schluss Schwerpunkt- und Momentenssätze. Wir machen uns zwar auch hier zu Beginn Gedanken über die Kinematik, aber diese fallen sehr einfach aus. Ausgangspunkt ist daher ein sauberes Freikörperbild in dem wir sämtliche Kräfte und dynamischen Größen notieren. Darauf aufbauend lassen sich dann alle Schwerpunkt- und Momentensätze für die Teile des Systems aufstellen. Damit können wir anschließend bereits die Beschleunigung für das Brett berechnen. Diese führt uns auf direktem Wege, durch Zeitintegration, zur Geschwindigkeit des Bretts und schließlich über die Kinematik zur Geschwindigkeit der Person am Brett. Alle Details gibt es natürlich wieder im verlinkten Video. Viel Spaß damit!

Bei Fragen oder Anmerkungen zu Beispiel oder Rechenweg bitte einfach hier oder auf YouTube einen Kommentar hinterlassen. Ich freue mich auf eure Rückmeldungen und beantworte gerne alle Fragen.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald,
Markus

Statik: Zweifacher Gelenkbalken mit Einspannung

Herzlich Willkommen!

Wir möchten uns in diesem Beitrag einen 2fachen Gerberträger ansehen, d.h. einen Gelenkbalken mit zwei Gelenken laut folgender Angabe.

An einem Gelenkbalken ist unmittelbar rechts vom Gelenk G1 ein Querarm angeschweißt, der durch ein Kräftepaar belastet wird. Außerdem greift unmittelbar rechts vom Gelenk G2 eine Kraft P an.

Wie groß sind die Lagerreaktionen und die Gelenkkräfte?
Wie ändern sie sich, wenn die Kraft P unmittelbar links vom Gelenk G2 angreift?

Quelle: Aufgabe I.4.8 (S. 23) aus W. Hauger et al., Aufgaben zu Technische Mechanik 1-3, 7. Auflage, 2012 Springer, Heidelberg

Wir können wie schon in den anderen Beispielen zum Gerberträger besprochen, den Träger an den Gelenken trennen und einzelne Gleichgewichte anschreiben. Hier erhalten wir also drei Einzelteile. Für jedes davon lassen sich die drei Gleichgewichtsbedingungen aufstellen. Eine Besonderheit hier ist, dass wir sofort sehen, dass es keine Kräfte in Horizontalrichtung geben wird. Wir können also das horizontale Kräftegleichgewicht gleich von Beginn an weglassen. Anschließend sehen wir, dass sich aus den jeweiligen Teilstücken sofort die Unbekannten Größen berechnen lassen, ohne ein Gleichungssystem lösen zu müssen. Zumindest dann, wenn die Reihenfolge der Berechnung an den Teilsystemen klug gewählt wird. Zum Schluss besprechen wir noch die Eingangs gestellte Frage: Macht es einen Unterschied ob die äußere Kraft P unmittelbar rechts oder links von G2 liegt. Diese Frage beantworten und natürlich den kompletten Rechenweg im Detail diskutieren wir im verlinkten Video! Ganz viel Spaß damit!


Sollten Fragen auftauchen schreibt mir bitte unbedingt hier oder auf YouTube einen Kommentar. Wie ihr hoffentlich in der Vergangenheit gesehen habt, versuche ich alle Fragen verständlich zu beantworten. Auch eine scheinbar einfache Frage ist besser wenn sie geklärt wird. Scheut also bitte nicht davor zurück zu Fragen.

Vielen Dank und bis bald,
Markus

Lagrange: Physikalisches Pendel an vertikaler Feder

Herzlich Willkommen!

Diesmal habe ich eine Variation eines schon gerechneten Lagrange-Beispiels für euch, nämlich ein physikalisches Einfachpendel an einer vertikalen Feder.

Ein homogenes Stabpendel der Masse M und der Länge 2L ist an seinem Drehpunkt vertikal federnd aufgehängt. Die Federkonstante beträgt c. Die Erdbeschleunigung wirkt vertikal nach unten und das System bewegt sich nur in der Blattebene.

Bestimme für dieses System:
*die kinetische Energie T und die potentielle Energie V sowie die Lagrange Funktion,
*die Bewegungsgleichungen,
*die linearisierte Form der Bewegungsgleichungen,
*die Bedingung für die Übereinstimmung der Eigenfrequenzen von Translations- und Rotationsschwingung.

Die Angabe gibt es wie gewohnt zum Download.

Wir benötigen zu Beginn wieder die Koordinaten und Geschwindigkeiten der Massepunkte im System um die Energien aufstellen zu können. Die Koordinaten des Aufhängepunktes sind, wie auch im Beispiel zum federnd aufgehängten Doppelpendel, nicht notwendig, obwohl sich dieser natürlich bewegt. Allerdings hat auch hier die Feder in dieser Idealisierung keine Masse und damit auch keine Energie und trägt damit auch nichts zur Lagrangefunktion bei. Damit können wir bereits kinetische und potentielle Energie des Systems, sowie die Lagrangefunktion hinschreiben. Über die wohlbekannten Euler-Lagrange-Gleichungen erhalten wir zwei gekoppelte Bewegungsgleichungen. Eine für den Pendelwinkel und eine für die Federauslenkung. Am Ende sehen wir uns noch die linearisierte Form der Bewegungsgleichungen an und stellen fest, dass es auch dort Kopplungen gibt. Alle Details gibt es wie gewohnt im verlinkten Video. Viel Spaß dabei!

Unterstützt bitte auch meine Arbeit durch ein Like und eine Weiterempfehlung der Website und meines YouTube Kanals. Falls ihr es noch nicht getan habt, helft ihr außerdem mit einem Abo des Blogs und des Kanals. Das kostet schließlich nichts. Vielen Dank!

Viel Spaß mit dem Beispiel und bis bald,
Markus

Statik: Gerberträger mit Streckenlast

Herzlich Willkommen!

Diesmal gibt es ein etwas komplexeres Beispiel in dem wir einen Gerberträger unter anderem mit einer Streckenlast beaufschlagen wollen.

Für den dargestellten Gerberträger sollen die Lagerreaktionen und die Gelenkkraft bestimmt werden.

Quelle: Aufgabe I.4.7 (S. 22f.) aus W. Hauger et al., Aufgaben zu Technische Mechanik 1-3, 7. Auflage, 2012 Springer, Heidelberg

Wir ersetzen als ersten Schritt die Streckenlast durch ihre resultierende Einzellast. Dann erstellen wir ein Freikörperbild in dem wir den Träger am Gelenk trennen und damit ein linkes und rechtes Teilsystem erhalten. Hier ist es allerdings auch hilfreich zuerst das Gesamtsystem anzusehen. Daraus erhalten wir in diesem Fall nämlich die horizontale Komponente der Lagerkraft in A und können schließen, dass die horizontalen Anteile der Gelenkskräfte verschwinden müssen. Das erleichtert uns bereits die Rechnung. Dann werden Kräfte- und Momentengleichgewichte am linken Teilsystem aufgestellt und damit ein Teil der Unbekannten berechnete. Für das rechte Teilsystem gehen wir dann den Weg zweier Momentengleichgewichte – natürlich um unterschiedliche Punkte. Auch das ist möglich, wie wir im Video besprechen. Damit lassen sich dann auch noch die restlichen Unbekannten berechnen. Die Details findest du wie immer im verlinkten Video. Viel Spaß beim Ansehen!


Wenn Fragen oder Unklarheiten auftauchen, freue ich mich jederzeit über deinen Kommentar – entweder hier oder direkt auf YouTube.

Bis bald,
Markus

Theorie: Streckenlast in Einzellast umrechnen

Herzlich Willkommen!

Wir besprechen heute in der Theorie, wie sich beliebige Streckenlasten in äquivalente Einzellasten umrechnen lassen. Dies ist insofern wichtig, als sich mit Einzellasten oft einfacher arbeiten lässt. Wenn einmal bekannt ist, wie eine solche Umrechnung funktioniert – nämlich über Fläche unter Streckenlast und Schwerpunkt der Streckenlast – dann sind wir in der Lage jede beliebige Streckenlast in eine Einzellast umzurechnen. Schließlich diskutieren wir zur Veranschaulichung noch, wie das ganze an einer dreiecksförmigen Streckenlast funktioniert. Das Video dazu erklärt wie gewohnt sämtliche Details!


Sollte dennoch Fragen offen bleiben dann freue ich mich auf deinen Kommentar. Wenn du sonst Wünsche, Anmerkungen oder ähnliches hast bitte ebenfalls gerne melden.

Vielen Dank und bis bald,
Markus

Statik: Balken auf Stäben unter Streckenlast

Herzlich Willkommen!

Heute sehen wir uns ein konkretes Beispiel an, wie wir einerseits mit Stäben und Stabkräften umgehen und andererseits eine dreiecksförmige Streckenlast in unsere Rechnung mit einbeziehen. Die Angabe für dieses Problem lautet kurz und knackig folgendermaßen:

Ein Balken unter Dreiecksbelastung wird von drei Stäben gestützt. Wie groß sind die Stabkräfte?

Quelle: Aufgabe I.4.1 (S. 20f.) aus W. Hauger et al., Aufgaben zu Technische Mechanik 1-3, 7. Auflage, 2012 Springer, Heidelberg

Das Freikörperbild ist auch hier unser zentraler Zugang zur Lösung des Problems. Wir ersetzen dabei, wie in der Theorie besprochen, die dreiecksförmige Streckenlast gegen eine äquivalente Einzellast. Dann müssen wir uns noch Gedanken zu den Stabkräften machen. Dabei ist zu berücksichtigen, dass idealisierte Stäbe nur Kräfte in Längsrichtung (Zug & Druck), aber keine Kräfte quer zum Stab aufnehmen können. Schließlich bestimmen wir noch über die Geometrie den Winkel der beiden Stäbe 1 und 3. Mit diesen Zutaten lassen sich die Gleichgewichtsbedingungen problemlos aufstellen und das System aus 3 Gleichungen anschließend lösen. Im Detail besprechen wir den Lösungsweg wieder im verlinkten Video.


Wenn Fragen oder Unklarheiten auftauchen, freue ich mich jederzeit auf eure Kommentare – entweder hier oder direkt auf YouTube.

Bis bald,
Markus