Diesmal sehen wir uns ein etwas sportlicheres Beispiel an, nämlich den Stangenschuss beim Fußball. Wir möchten uns überlegen welcher Effet dem Ball mitgegeben werden muss um ihn von der Stange ins Tor zu bekommen.
Ein Fußball mit Masse m und Trägheitsmoment θs trifft mit der Geschwindigkeit v0 horizontal gegen den rauen Pfosten des Tores. Der Aufprall erfolgt dabei zentrisch unter dem Winkel α zur Torlinie. Die Stoßziffer beträgt ε.
Wie groß muss der Effet, d.h. die Winkelgeschwindigkeit ω0 des Balls sein, damit er nach dem Aufprall über die Torlinie geht, wenn während des Stoßes Haftung eintritt?
Quelle: Aufgabe 6.10 (S. 143) aus D. Gross, W. Ehlers, P. Wriggers, Formeln und Aufgaben zur Technischen Mechanik 3, 8. Auflage, 2007 Springer, Berlin
Die Angabe gibt es wie üblich als Download inkl. Endergebnissen. Ihr könnt damit das Beispiel zuerst selbst rechnen und dann mit meiner Musterlösung vergleichen.
Wir starten dieses Beispiel auch diesmal mit einem Freikörperbild in welches wir alle Geschwindigkeiten und Stoßantriebe einzeichnen. Daraus lassen sich Impuls- und Drehimpulssatz für den Ball ableiten. Zusätzlich benötigen wir die Stoßhypothese und einige Überlegungen zur Kinematik während des Stoßvorganges. Aus dem damit erstellten Gleichungssystem lässt sich dann mit wenigen Zusatzüberlegungen zur Geometrie, der benötigte Effet beim Schuss berechnen. Alle Schritte im Detail besprechen und berechnen wir wieder im verlinkten YouTube Video.
Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.
Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!
In diesem Beispiel zur Relativkinetik geht es um eine Kugel die zwischen zwei parallelen Platten gleiten kann, während die Platten selbst um die vertikale Achse rotieren.
Zwei parallele, starre Platten rotieren mit konstanter Winkelgeschwindigkeit Ω um die raumfeste vertikale z-Achse. Zwischen den Platten kann reibungsfrei eine kleine Kugel (Masse m) gleiten.
Bestimmen Sie die Bewegungsgleichungen des Kugelschwerpunktes in den Koordinaten q1 und q2, sowie die auf Kugel wirkenden Kräfte.
Quelle: Aufgabe D34 (S. 356) aus J. Berger, Klausurentrainer Technische Mechanik, 2. Auflage, 2008 Vieweg+Teubner, Wiesbaden
Wir beginnen hier mit der Berechnung des Ortsvektors der Kugel. Anschließend lassen sich die benötigten Geschwindigkeits- und Beschleunigungsterme bestimmen, nämlich Relativgeschwindigkeit und -beschleunigung sowie Führungs- und Coriolisbeschleunigung. Mittels Schwerpunktsatz können wir schließlich die Bewegungsgleichungen des Systems und die auf die Kugel wirkende Normalkraft bestimmen. Die Rechenschritte im Detail, besprechen wir ausführlich im YouTube Video.
Bei Fragen oder Anmerkungen zu Beispiel oder Rechenweg bitte einfach hier oder auf YouTube einen Kommentar hinterlassen. Ich freue mich auf eure Rückmeldungen.
Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!
Heute sehen wir uns wieder einmal ein Beispiel zum Prinzip von d’Alembert an.
Eine Platte der Masse M ruht auf zwei Walzen, die jeweils die Masse m und den Radius r besitzen. Die linke Walze ist als Vollzylinder, die rechte als dünnwandiger Hohlzylinder ausgeführt.
Ges.: *Bestimme die Beschleunigung der Platte unter der Annahme, dass kein Gleiten auftritt, mit Hilfe des Prinzips von d’Alembert.
Die Angabe gibt es natürlich wieder als Download inkl. Endergebnissen, damit ihr das Beispiel vorab selbst rechnen könnt.
Diese rechnerisch eher kurze Aufgabe eignet sich sehr gut dazu das Prinzip von d’Alembert genauer zu erklären. Wir diskutieren also welche Beiträge es gibt und woher diese kommen. Außerdem klären wir was es mit den d’Alembert’schen Trägheitstermen und Trägheitskräften auf sich hat. Im Zuge dessen rechnen wir selbstverständlich auch die gefragte Beschleunigung des Brettes aus. Das und noch einiges mehr gibt es wieder im verlinkten YouTube Video zu sehen. Viel Spaß damit!
Wenn ihr Fragen habt schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen schnellstmöglich beantworten.
Hat euch das Video gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!
Wir widmen uns wieder einem Kreiselbeispiel. Darin wollen wir heute die Lager einer idealisierten Mischmaschine dynamisch auslegen. Folgendes ist gegeben:
Ein Rotor sei in einem rotierenden Rahmen gelagert. Die Masse des Rotors ist m, seine Massenträgheitsmomente Ix sowie Iy = Iz und seine Winkelgeschwindigkeit relativ zum Rahmen ωR. Für den Rahmen sind die Abmessungen l, der Winkel α sowie seine Winkelgeschwindigkeit Ω und Winkelbeschleunigung Ω˙ gegeben. Alle Lager sind als reibungsfrei anzunehmen.
Ges.: *Die Bestimmungsgleichungen für die Kräfte auf den Rotor in A und B dargestellt im rahmenfesten x-y-z-System. *Die relative Winkelbeschleunigung ω˙R des Rotors.
Quelle: Aufgabe 4.4.2 (S. 41) aus P. Lugner et al., Technische Mechanik, 1992 Springer-Verlag, Wien
Die Angabe zum Download findet ihr wie immer hier:
Wie meistens, starten wir mit einem Freikörperbild. Nachdem wir uns darüber im Klaren sind wie die Winkelgeschwindigkeiten im gegeben Koordinatensystem wirken, können wir den Drehimpulsvektor anschreiben. Für den Drehimpulssatz benötigen wir die Zeitableitung dieses Drehimpulsvektors. Diesmal haben wir auch eine nicht verschwindende partielle Zeitableitung. Der zweite Term des Drehimpulssatzes ist der Vektor der äußeren Momente. Die Momente entstehen aus den Lagerkräften und ermöglichen uns damit die Bestimmung eben dieser Lagerkräfte. Am Ende bestimmen wir noch ω_R und stellen fest, dass dessen x-Komponente konstant sein muss. Die Rechenschritte im Detail besprechen wir ausführlich im verlinkten YouTube Video. Viel Spaß damit!
Sämtliche Fragen beantworte ich wie immer sehr gerne – schreibt sie mir bitte einfach hier oder auf YouTube als Kommentar.
Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!
Wir wollen uns heute ein Beispiel ansehen bei dem zwei Stoßvorgänge hintereinander stattfinden. Der erste ist ein durch Seilstraffung ausgelöster Stoßvorgang, der zweite dann ein klassischer Stoß zwischen Kugel und Quader. Insbesondere die Seilstraffung beinhaltet ein paar interessante Gedankengänge, die wir im Detail besprechen werden. Zuerst allerdings zur Angabe:
Eine Kugel mit der Masse mA, die als Massenpunkt angenähert werden kann, ist über ein schlaffes Seil mit dem Lager C verbunden. Die Kugel wird lt. Skizze aus der Horizontalen im Abstand 3/4 l vom Lager losgelassen. Das Seil wird als undehnbar angenommen, so dass bei der Straffung ein plastischer Stoß (Stoßziffer ε = 0) auftritt. In der Vertikalen trifft das Fadenpendel anschließend vollkommen elastisch (Stoßziffer ε = 1) auf einen Quader der Masse mB und verschiebt diesen auf einer rauen Ebene mit dem Reibungskoeffizient μ.
Geg.: mA = 2 kg, mB = 5 kg, l = 1.2 m, μ = 0.3
Ges.: *Geschwindigkeit der Kugel unmittelbar vor der Seilstraffung. *Geschwindigkeit der Kugel nach dem Straffungsstoß und Stoßantrieb auf das Lager C. *Geschwindigkeit der Kugel unmittelbar vor dem Stoß mit dem Quader. *Geschwindigkeiten von Kugel und Quader unmittelbar nach deren Stoß. *Die Höhe auf welche die Kugel zurückpendelt und die Strecke um die der Quader verschoben wird.
Quelle: Aufgabe D30 (S. 345f.) aus J. Berger, Klausurentrainer Technische Mechanik, 2. Auflage, 2008 Vieweg+Teubner, Wiesbaden
Die Angabe gibt es wie üblich als Download inkl. Endergebnissen. Ihr könnt damit das Beispiel zuerst selbst rechnen und dann mit meiner Musterlösung vergleichen.
Wir starten dieses Beispiel wieder mit einem Freikörperbild und berechnen insbesondere die Geometrie für den freien Fall der Kugel. Danach diskutieren wir eine Koordinatentransformation die uns die Berechnung des Straffungsstoßes erleichtert. In diesem Zusammenhang besprechen wir auch wie der Straffungsstoß ablaufen wird. Nachdem das geklärt ist, können die Geschwindigkeiten unmittelbar nach dem Stoßvorgang und der Stoßantrieb auf das Lager C berechnet werden. Mittels Energieerhaltung lässt sich dann die Geschwindigkeit der Kugel vor dem Stoß mit dem Quader bestimmen und der elastische Stoß zwischen Kugel und Quader berechnen. Hier führen wir auch eine Plausibilitätskontrolle durch, was immer eine gute Sache ist. Am Ende berechnen wir noch wie weit die Kugel zurückschwingt und wie weit der Quader auf der reibungsbehafteten Unterlage rutscht. Alle Schritte im Detail besprechen und berechnen wir wieder im verlinkten YouTube Video.
Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.
Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!
Wir widmen uns diesmal der Frage, welche konkreten Themen hier auf der Website und auf meinem YouTube Kanal eigentlich behandelt werden. Das ganze könnt ihr je nach belieben als Video anschauen oder das Transkript lesen, das ich in diesem Beitrag zur Verfügung stelle.
Du wirst dich vielleicht fragen: Welche Inhalte erwarten mich eigentlich auf diesem Kanal oder hier im Blog? Die kurze Antwort würde lauten: Sehr, sehr viele.
Die längere Antwort und um welche Themengebiete es eigentlich geht, sehen wir uns im folgenden an.
Wir sprechen heute über die Inhalte, die ich in Zukunft behandeln werde bzw. schon behandle. Im Wesentlichen geht es um die großen Themengebiete Statik, Festigkeitslehre, Dynamik und höhere Dynamik.
Überblick über alle Themengebiete
In der Statik beschäftigen wir uns zu allererst und etwas außerhalb des Fokus mit der Vektorrechnung, weil das einfach ein sehr, sehr wichtiges Werkzeug ist, das wir brauchen werden. Deshalb hier auch in Blau dargestellt.
Dann geht es um die Kraftreduktion. Also wie reduziere ich ein allgemeines Kraftsystem, so dass eine resultierende Einzelkraft und eventuell ein resultierendes Moment übrig bleibt?
Dann schauen wir uns Momentengleichgewicht an, und was das im Sinne der Kraftreduktion bedeutet. Wir beschäftigen uns mit den Auflagerreaktionen, und natürlich mit den Gleichgewichtsbedingungen, Kräftegleichgewicht, Momentengleichgewicht.
Themengebiete in der Statik
Dann gehen wir einen Schritt weiter und diskutieren Streckenlasten, sehen uns an, wie wir eine Streckenlast ersetzen können durch resultierende Einzelkräfte. Wie das für einfache Streckenlasten funktioniert, wie beispielsweise eine Rechteckslast oder eine Dreieckslast, aber auch für komplexere Streckenlasten, bei denen eine Integration notwendig ist.
Dann machen wir einen kurzen Abstecher zu den Fachwerken, die in der technischen Mechanik, insbesondere im Bauingenieurwesen, natürlich auch eine große Rolle spielen.
Wir beschäftigen uns mit dem Riesenthema Schnittgrößen, und zwar hier im Gegensatz zu vielen Behandlungen, die vielleicht aus der HTL oder anderen technischen Schulen bekannt sind, mit einem Verlauf von Schnittgrößen, also einer Funktion, die über unseren gesamten Träger gilt und nicht nur mit speziellen Schnittgrößen an speziellen Punkten am Träger.
Und zu guter Letzt und vielleicht schon ein wenig in die Festigkeitslehre reichend. Beschäftigen wir uns noch mit der Berechnung von Schwerpunkten von allgemeinen Körpern.
Dann geht es weiter in der Festigkeitslehre. Dort beginnen wir mit der Definition und der Berechnung von Flächenträgheitsmoment.
Wir schauen uns an, was es mit dem sogenannten Spannungszustand auf sich hat. Wie Spannungen zu charakterisieren sind, den Spannungstensor.
Wir beschäftigen uns mit Materialverhalten. Wozu brauchen wir eigentlich eine Definition des Materialverhaltens und werden uns exemplarisch als eines der einfachsten Materialverhalten, Materialgesetze, das Hook’sche Gesetz – lineare Elastizität – ansehen.
Dann diskutieren wir, was Vergleichsspannungen sind, wofür wir diese brauchen. Warum Vergleichsspannungen so wichtig sind.
Themengebiete in der Festigkeitslehre I
Dann gehen wir sozusagen in die Ebene des Trägers. Beschäftigen uns mit Biegeträgern, Biegebelastungen. Schauen uns also an, was am Querschnitt eines Trägers passiert und wenden uns auch einem analytischen Verfahren zu, nämlich der Differentialgleichung der Biegelinie. Ein sehr mächtiges Werkzeug zur Berechnung von Verformungen von Trägern.
Ein wichtiger Punkt je nach Fachgebiet kann natürlich auch die Torsion sein. Diese werden wir uns hier für reine Torsion ansehen.
Und am Ende möchten wir uns gerne noch in diesem Abschnitt der Festigkeitslehre ein bisschen Gedanken darüber machen, wie Träger zu dimensionieren sind. Alle Dinge von der Statik begonnen, also von der Reduktion eines Kraftsystems weg, führen uns am Ende zu diesem Kapitel Trägerdimensionierung.
Ein sehr, sehr wichtiges Kapitel aus der technischen Mechanik, das dann auch in weiterführenden Fächern, wie beispielsweise den Maschinenelementen benötigt wird.
Außerdem haben wir dann in der Festigkeitslehre auch noch andere weiterführende Kapitel, die ich gerne diskutieren würde. Nämlich zum Beispiel den Querkraftschub. Energiemethoden, also den Satz von Castigliano und den Satz von Menabrea, die uns auch zur Berechnung statisch unbestimmter Systeme dienen. Die Bredt’schen Formeln, die für dünnwandige Querschnitte gelten. Und zu guter Letzt beschäftigen wir uns noch ein wenig mit Stabilität, nämlich mit der Euler’schen Knickung.
Themengebiete in der Festigkeitslehre II
Das ist aber noch nicht alles, sondern wir beschäftigen uns natürlich auch mit der Dynamik. Auch die Dynamik ist ein wichtiger Bestandteil der technischen Mechanik und wir beginnen dort ganz langsam mit der Kinematik.
Punktkinematik, zu allererst, schiefe Würfe. Und dann auch Starrkörper- oder Vektorkinematik, wo dann auch Rotationen von Körpern eine Rolle spielen, weil die Körper eine gewisse Ausdehnung haben. Dort sehen wir dann Dinge wie Kurbeltriebe, Kreuzschieber und andere technisch relevante Anwendungen.
Themengebiete in der Dynamik
Um dann auch die Kräfte und Momente behandeln zu können, die zu dieser Kinematik führen brauchen wir auf dem Weg die Massenträgheitmomente. Wir müssen also definieren, was ist ein Massenträgheitsmoment? Wie berechnet man ein Massenträgheitsmoment und wozu wird es eigentlich verwendet?
Dann können wir in die Kinetik gehen. Auch hier Punktkinetik und Starrkörperkinetik. Also Schwerpunktsatz, sprich Newtonsches Axiom und Drallsatz bzw. Drehimpulssatz.
Und hier am Ende der Einführung zur Dynamik stehen dann noch Schwingungen. Auch das natürlich technisch von höchster Relevanz.
Das war aber auch noch nicht alles, sondern wir beschäftigen uns hier auch mit der höheren Dynamik, in diesem Falle insbesondere mit Dingen wie Relativkinetik.
Die Relativkinetik beginnt ja immer mehr an Bedeutung zu gewinnen. Wenn es zum Beispiel um automatisierte Prozesse in Fabriken geht.
Dann geht es auch um analytische Prinzipien in der Dynamik, nämlich die Lagrange-Mechanik und den Satz von d’Alembert, wo wir dann auch Systeme mit mehreren Freiheitsgraden berechnen können. Auch das ist zum Beispiel in der Maschinendynamik eine wichtige Sache, wenn es um die Dämpfung von Schwingungen geht oder auch nur, das Schwingungsverhalten an sich.
Was vielleicht für die eine oder den anderen auch ganz spannend sein kann, nämlich insbesondere, wenn es in Richtung Sachverständigentätigkeit geht, Verkehrsunfälle beispielsweise, sind Stoßvorgänge. Wir werden hier mehrere Stoßvorgänge durchbesprechen, konkrete Beispiele rechnen, auch Beispiele von Autounfällen. Und wir werden dann sehen, dass es hier tatsächlich möglich ist, mit einer sehr guten Genauigkeit zurückzuverfolgen, ob beispielsweise Verkehrsregeln bei einem Zusammenstoß tatsächlich eingehalten wurden.
Und zu guter Letzt geht es auch noch um die Kreiseldynamik, also um Systeme, die im Allgemeinen um mehrere Achsen rotieren und damit als Kreisel definiert werden können, wo Dinge wie Relativkinetik dann auch in diese Kreiseldynamik hineinspielen. Aber insbesondere ein allgemeiner Drehimpuls- oder Drallsatz notwendig ist. Auch das höchst spannende Systeme, die wir uns auch hier anschauen werden.
Du siehst also, wir werden es im Laufe der Zeit mit einer Vielzahl an verschiedensten Themengebieten in der technischen Mechanik zu tun haben. Ich werde immer versuchen, Theorie und Beispiele zu den jeweiligen Themengebieten zur Verfügung zu stellen. Die Themengebiete werden im Laufe der Zeit in verschiedenen Playlists organisiert sein, sodass du hoffentlich möglichst rasch genau das findest, was du suchst.
Wenn es zu den Inhalten oder allgemein Fragen gibt, dann bitte zögere nicht und stelle die Frage gerne in den Kommentaren. Ich werde wie immer die Frage schnellstmöglich beantworten und freue mich schon darauf.
Hat euch dieser Inhalt gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen und erzählt gerne euren Freund*innen und Kolleg*innen von meinem Angebot. Vielen Dank!
Das letzte der nachzuholenden Beispiele ist noch einmal aus der Relativkinetik. Allerdings handelt es sich um eher untypische Relativkinetik. Warum, werden wir weiter unten besprechen. Zuerst aber zur Angabe.
Ein Keil der Masse m2 und des Neigungswinkels α kann sich entsprechend der Abbildung auf einer horizontalen Ebene bewegen. Auf dem Keil befindet sich im höchsten Punkt ein Quader, der aus der Ruhelage heraus reibungsfrei nach unten rutscht.
Geg.: m1 = 3 kg, m2 = 6 kg, α = 30°, l = 1.2 m
Ges.: *Beschleunigung des Quaders und des Keils. *Geschwindigkeit des Quaders und des Keils, wenn der Quader seine tiefste Lage erreicht. *Verschiebung des Keils, wenn der Quader seine tiefste Lage erreicht.
Quelle: Aufgabe D34 (S. 356) aus J. Berger, Klausurentrainer Technische Mechanik, 2. Auflage, 2008 Vieweg+Teubner, Wiesbaden
In der Einleitung habe ich es schon angesprochen: Dieses Beispiel ist etwas unüblich für Relativkinetik. Wir müssen hier nämlich mit den Schwerpunktsätzen starten und können uns erst damit die relevanten Beschleunigungen ausrechnen. Normalerweise ist es umgekehrt. Daher ist besonders hier ein sauberes Freikörperbild essentiell. Zur besseren Veranschaulichung fertigen wir sogar zwei separate Freikörperbilder an. Eines für die Kräfte und eines für die Beschleunigungen. Damit können wir dann die Schwerpunktsätze aufstellen und uns daraus und mit Hilfe kinematischer Zusammenhänge alle gefragten Werte berechnen. Die Rechenschritte im Detail, besprechen wir ausführlich im YouTube Video.
Bei Fragen oder Anmerkungen zu Beispiel oder Rechenweg bitte einfach hier oder auf YouTube einen Kommentar hinterlassen. Ich freue mich auf eure Rückmeldungen.
Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!
Bis morgen mit einer weiteren Einheit zur Theorie, Markus
Das vorletzte der Beispiele die ich hier nachholen möchte ist ein Kreisel. Konkret wollen wir den Kreisel als Drehzahlmesser verwenden und sehen uns an wie wir das zu Stande bringen können. Die Angabe lautet:
Ein Kreisel kann auch als Drehzahlmesser benutzt werden, nämlich folgendermaßen: In einem Rahmen 1 ist ein Gehäuse 2 reibungsfrei drehbar gelagert und mit einer Drehfeder mit diesem verbunden. Ein im Gehäuse 2 gelagerter Kreisel 3 rotiert mit der relativen Winkelgeschwindigkeit ω_R gegen dieses Gehäuse. Wird nun der Rahmen 1 mit einer konstanten Winkelgeschwindigkeit Ω gedreht, so stellt sich nach einem Einschwingvorgang ein konstant bleibender Winkel ϕ ein und Ω kann bestimmt werden.
Geg.: Schwerpunkte liegen im Schnittpunkt der Drehachsen Gehäuse 2: ϕ, Hauptträgheitsmomente I_Gx, I_Gy, I_Gz, lineare Drehfeder mit Konstante c_T, vollkommen entspannt für ϕ = 0 Kreisel 3: ω_R = const., Trägheitsmomente: I_x, I_y = I_z
Ges.: Berechne die konstante Winkelgeschwindigkeit Ω des Rahmens 1 nach dem Einschwingvorgang unter der Annahme, dass ω_R viel größer als Ω ist.
Quelle: Aufgabe 4.4.3 (S. 42) aus P. Lugner et al., Technische Mechanik, 1992 Springer-Verlag, Wien
Auch hier starten wir wieder mit dem Freikörperbild, von dem ihr ja jetzt schon wisst, dass es ein essentieller Bestandteil der technischen Mechanik ist. Nachdem wir uns darüber im Klaren sind wie die Winkelgeschwindigkeiten im gegeben Koordinatensystem wirken, können wir den Drehimpulsvektor anschreiben. Für den Drehimpulssatz benötigen wir die Zeitableitung dieses Drehimpulsvektors, welche hier auf den Kreuzproduktterm (Rotation des Koordinatensystems) beschränkt bleibt, weil wir es mit konstanten Winkelgeschwindigkeiten zu tun haben. Der zweite Term des Drehimpulssatzes ist der Vektor der äußeren Momente. Dabei spielt die gegebene Drehfeder eine Rolle. Nachdem dieser aufgestellt ist, kann der volle Drehimpulssatz angeschrieben und die Vereinfachung für ω_R sehr viel größer als Ω gemacht werden. Zum Abschluss diskutieren wir noch, welche „Drehzahl“ mit einem solchen Gerät typischerweise gemessen wird. Die Rechenschritte im Detail besprechen wir ausführlich im verlinkten YouTube Video. Viel Spaß damit!
Sämtliche Fragen beantworte ich wie immer sehr gerne – schreibt sie mir bitte einfach hier oder auf YouTube als Kommentar.
Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!
Heute geht es wieder um ein Beispiel aus der Relativkinetik bzw. genauer gesagt aus der Relativkinematik (weil wir nur Geschwindigkeiten und Beschleunigungen berechnen). Hier ist die Angabe dazu:
Der Ausleger OA eines Transportbandes dreht sich im dargestellten Augenblick mit konstanter Winkelgeschwindigkeit ω1 um die z-Achse und richtet sich gleichzeitig mit konstanter Winkelgeschwindigkeit ω2 auf. Das Transportband selbst bewegt sich mit der Geschwindigkeit r˙ und Beschleunigung r¨.
Wie der Name des Beispiels schon sagt, werden wir uns der Kinematik der Relativbewegung bedienen. Dazu überlegen wir uns ein geeignetes Koordinatensystem und stellen den Ortsvektor in diesem Koordinatensystem auf. Dann berechnen wir die Beiträge zur Absolutgeschwindigkeit, nämlich Relativ- und Führungsgeschwindigkeit, und stellen daraus die Absolutgeschwindigkeit für das Paket auf. Zum Schluß berechnen wir aus den Termen Relativ-, Führungs- und Coriolisbeschleunigung die Absolutbeschleunigung des Pakets. Zu allen Ergebnissen gibt es in diesem Fall auch Zahlenwerte. Die Rechenschritte im Detail besprechen wir wieder ausführlich im aktuellen YouTube Video.
Sämtliche Fragen beantworte ich natürlich sehr gerne – schreibt sie mir einfach hier oder auf YouTube als Kommentar.
Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!
Heute sehen wir uns ein Beispiel zum Prinzip von d’Alembert an.
Gegeben ist das nachfolgend dargestellte schwingungsfähige mechanische System, bestehend aus Rollen, Massen und Federn. Die Masse m wird gehalten und zum Zeitpunkt t=0 losgelassen. Zu Beginn sind alle Federn entspannt.
Geg.: m, I, c, k, R, r
Ges.: *Die Winkelkoordinaten φ1, φ2, φ3 als Funktion von x(t) *Sämtliche Beiträge zum Prinzip von d’Alembert *Die Bewegungsgleichung des Systems sowie dessen Eigenkreisfrequenz *Das Bewegungs-Zeit-Gesetz x(t)
Die Angabe gibt es natürlich wieder als Download inkl. Endergebnissen, damit ihr das Beispiel vorab selbst rechnen könnt.
Für die Lösung dieser Aufgabe überlegen wir uns zuerst die Kinematik an den einzelnen Rollen. Dazu nutzen wir zur besseren Veranschaulichung ein Freikörperbilder. Dann sind alle kinematischen Beziehungen aufzustellen. Wir werden feststellen, dass es nur einen Freiheitsgrad im System gibt. Damit können alle kinematischen Größen als Funktion der Variable x(t) ausgedrückt werden und es gibt am Ende auch nur eine Bewegungsgleichung. Um die Bewegungsgleichung zu berechnen nutzen wir das Prinzip von d’Alembert. Dafür ist es wiederum nötig die virtuelle Arbeit von äußeren und inneren Kräften, sowie die virtuelle Arbeit der Trägheitskräfte aufzustellen. Am Ende können wir dann die Bewegungsgleichung lösen und das Bewegungs-Zeit-Gesetz anschreiben. Wie das im Detail funktioniert erkläre ich im untenstehenden YouTube Video.
Wenn ihr Fragen habt schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen schnellstmöglich beantworten.
Hat euch das Video gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!
Viel Spaß beim Rechnen und bis spätestens Donnerstag zum nächsten Beispiel, Markus