Unelastischer Stoß: Punktmasse bleibt in Quader stecken

Herzlich Willkommen!

Im Stoßbeispiel, dass wir uns für heute vornehmen möchten, geht es um ein physikalisches Pendel mit einer Pendelkugel. Diese Pendelkugel wird aus der Ruhe losgelassen und trifft am tiefsten Punkt an eine Wand. Der Stoßvorgang selbst hat dabei eine definierte Stoßziffer ε, ist also weder vollkommen elastisch noch vollkommen plastisch.

Eine Masse m2 stößt vollkommen unelastisch mit der Geschwindigkeit v2 gegen eine ruhende Masse m1, die an zwei gleichlangen, masselosen Pendelstützen aufgehängt ist und verbleibt in ihr. Aus dem Maximalausschlag φ=α soll auf die Geschwindigkeit v2 geschlossen werden, wobei die Wirkungslinie von v2 durch den Schwerpunkt von m1 geht.

Ges.:
*Geschwindigkeit der Massen nach dem Stoß.
*Zusammenhang zwischen dem Winkel α der Umkehrlage und v2
*Energieverlust während dem Stoß

Die Angabe gibt es wie gewohnt zum Download. Somit könnt ihr das Beispiel zuerst selbst rechnen und dann mit der Musterlösung vergleichen.

Zur Lösung dieses Beispiels verwenden wir für den Stoßvorgang selbst eine reine Impulsbilanz, die wir für das Gesamtsystem aufstellen. Nachdem es sich um einen zentrischen Stoß handelt, reicht uns diese Impulsbilanz aus um einen Zusammenhang zwischen der Geschwindigkeit unmittelbar nach dem Stoß mit jener unmittelbar vor dem Stoß herzustellen. Zur Ermittlung des gesuchten Zusammenhangs zwischen der Geschwindigkeit v2 der Punktmasse vor dem Stoß und dem Maximalausschlag der Gesamtmasse danach setzen wir anschließend eine Energieerhaltung an, weil der Schwingvorgang nach dem Stoß ohne Energieverlust passiert. Schließlich können wir den Energieverlust der während des Stoßvorgangs selbst auftritt mittels einer Energiebilanz zwischen den Zeitpunkten unmittelbar vor und unmittelbar nach dem Stoß berechnen. Die Details und weitere Anmerkungen zum Beispiel findet ihr wie immer im verlinkten Video. Viel Freude dabei!

Bei Fragen könnt ihr jederzeit gerne entweder hier oder auf YouTube einen Kommentar hinterlassen. Ich werde alle Kommentare wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte auch ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen und empfehlt mich gerne weiter. Vielen herzlichen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Schnittgrößen an spezieller Stelle

Herzlich Willkommen!

Wir haben uns schon theoretisch angesehen was Schnittgrößen sind und wie wir Schnittufer definieren. Als Brückenbeispiel für die Berechnung von Schnittgrößen wollen wir an speziellen Punkten eines Trägers die drei Schnittgrößen Normalkraft, Querkraft und Biegemoment bestimmen. In Zukunft wollen wir eher Verläufe dieser Schnittgrößen bestimmen, also durchgehende Funktionen der Laufvariable (=Trägerlänge). Um diese Herangehensweise allerdings vorzubereiten, sehen wir uns zuerst an wie wir überhaupt Schnittgrößen bestimmen können – eben an speziellen Punkten entlang des Trägers.

Normal- und Querkraft sowie das Biegemoment im Balken an den Stellen C und D sind zu bestimmen. Die Lagerung in B sei ein Rollenlager. Punkt C liege unmittelbar rechts der Last P.
Geg.: P, M, l

Hinweis: Das Koordinatensystem ist so zu wählen, dass die x-Achse nach rechts, die y-Achse aus der Blattebene heraus und die z-Achse nach unten positiv festgelegt sind.

Quelle: Aufgabe 7.6 (S. 407) aus Russell C. Hibbeler, Technische Mechanik 1 Statik, 12. Auflage, 2012 Pearson GmbH, München

Um dieses Beispiel zu lösen müssen wir ebenfalls wieder ein Freikörperbild zeichnen und damit die Lagerreaktionen aus dem Gleichgewicht bestimmen. Wir benötigen also alles bisher in der Statik besprochene auch zur Berechnung von Schnittgrößen. Anschließend können wir den Schnitt durchführen. Wir haben schon einige Male besprochen, dass jedes Teilsystem eines statischen Systems ebenfalls im statischen Gleichgewicht sein muss. Genau diese Tatsache können wir uns zu Nutze machen und für den jeweiligen Schnitt wieder die Gleichgewichtsbedingungen (Kräfte- & Momentengleichgewicht) ansetzen. Dazu zeichnen wir ebenfalls wieder ein Freikörperbild für das geschnittene Teilsystem. Die Schnittgrößen sorgen damit dafür, dass dieses Teilsystem im Gleichgewicht bleibt. Mit dieser Vorgehensweise können wir dann also beide Schnitte an C und D ausführen und deren Schnittgrößen berechnen. Die Details gibt es wie gewohnt im verlinkten Video.


Im nächsten Beispiel werden wir dann diskutieren wie wir die oben besprochene Vorgehensweise zur Berechnung eines analytischen Schnittgrößenverlaufs anwenden können. Bei Fragen und Unklarheiten meldet euch bitte jederzeit gerne. Gerade Schnittgrößen zu verstehen ist essentiell für die Technische Mechanik.

Vielen Dank und bis bald,
Markus

Theorie: Schnittgrößen & Schnittufer

Herzlich Willkommen!

Im heutigen Beitrag wollen wir uns dem Thema Schnittgrößen annähern. Wir diskutieren, dass wir Schnittgrößen brauchen um die inneren Belastungen von Bauteilen zu bestimmen. Außerdem besprechen wir natürlich welche Schnittgrößen es gibt, nämlich Normalkraft, Querkraft und Schnittmoment. Ein zentraler Punkt ist ob es sich bei einem gewählten Schnitt um ein positives oder negatives Schnittufer handelt. Was ein Schnittufer ist und woran sich erkennen lässt ob ein positives oder negatives Schnittufer vorliegt besprechen wir sehr detailliert und wie ich glaube äußerst verständlich. Schließlich sehen wir uns noch an wie für beliebige Streckenlasten die Schnittgrößen durch einfache Integration berechnet werden können und welche Zusammenhänge hier gelten.


Es handelt sich bei den Schnittgrößen um ein äußerst wichtiges und sehr zentrales Thema der technischen Mechanik. Wenn du also das Gefühl hast, hier irgendetwas nicht so ganz verstanden zu haben, dann frag bitte jederzeit gerne nach. Die Basics hier zu verstehen bringt im Verlaufe der Mechanik einen unheimlichen Verständnisvorsprung.

Vielen Dank und bis bald,
Markus

Komplexes Fachwerk: Ritterschnitt, Stabkräfte

Herzlich Willkommen!

Im letzten Beitrag ging es um ein einfaches Fachwerk und wie wir die besprochenen Nullstabregeln anwenden können. Diesmal wollen wir ein komplexeres Fachwerk besprechen und uns auch den sogenannten Ritterschnitt ansehen.

Für das gegebene Fachwerk sollen die Kräfte in den Stäben BC, HC, HG, DC, CF und CG bestimmt werden. Dazu wird das Fachwerk freigeschnitten und eine Gleichgewichtsbedingung zur Berechnung jeder Kraft verwendet. Zudem soll angegeben werden ob die Stäbe unter Zug oder Druck stehen

Quelle: Aufgabe 6.42/6.43 (S. 345) aus Russell C. Hibbeler, Technische Mechanik 1 Statik, 12. Auflage, 2012 Pearson GmbH, München

Um die geforderten Stabkräfte in diesem komplexen Fachwerk bestimmen zu können müssen wir zu Beginn natürlich die Lagerreaktionen berechnen. Das funktioniert durch die statische Bestimmtheit des Systems mittels Gesamtgleichgewicht. Dann können wir uns einen klugen Schnitt durch das gesamte Fachwerk überlegen, einen sog. Ritterschnitt. In unserem Fall verläuft dieser durch die Stäbe BC, HC und HG. Schließlich überlegen wir uns noch, wie wir möglichst Gleichgewichtsbedingungen aufstellen können, die auch direkt Stabkräfte liefern. Das geht deshalb, weil in einem statischen System auch jedes Teilsystem im statischen Gleichgewicht sein muss. Dazu bietet sich ein Punkt in Verlängerung des Stabes HG an, sodass Momentengleichgewichte verwendet werden können. Dafür benötigen wir auch noch ein wenig Geometrie in Form von Dreiecken. Somit lassen sich die drei Stabkräfte im linken Teil berechnen. Für die Stabkräfte im rechten Teil funktioniert die Vorgehensweise vollkommen analog. Wie immer diskutieren wir die Details im verlinkten Video. Viel Spaß!


Sollte es Fragen geben schreib bitte jederzeit gerne einen Kommentar und melde dich auch bei Wünschen zu Beispielen oder mit Verbesserungsvorschlägen.

Vielen Dank und bis bald,
Markus

Einfaches Fachwerk: Nullstäbe & Rundschnitt

Herzlich Willkommen!

Wir schauen uns in diesem Beitrag an, wie wir an einem konkreten Beispiel im Fachwerk Nullstäbe bestimmen können. Die Regeln haben wir ja bereits in der Theorie zu Nullstäben diskutiert. Jetzt wollen wir diese Regeln auch in der Praxis anwenden.

Das dargestellte Fachwerk wird durch eine Kraft P belastet. Identifiziere die Nullstäbe. Wie groß sind die Lagerreaktionen und die Kraft im Stab 4?

Quelle: Aufgabe I.5.1 (S. 24.) aus W. Hauger et al., Aufgaben zu Technische Mechanik 1-3, 7. Auflage, 2012 Springer, Heidelberg

Um die Nullstäbe zu bestimmen, sehen wir uns systematisch die Knoten an und fragen uns ob eine der drei Regeln für Nullstäbe gültig ist. In diesem Beispiel stellen wir fest, dass sich 1, 7 und 9 als Nullstäbe herausstellen. Dann können wir die Lagerreaktionen berechnen und mittels Rundschnitt (freischneiden eines einzelnen Knotens) des linken unteren Knotens die Kraft im Stab 4 bestimmen. Das alles gehen wir Schritt für Schritt im verlinkten Video durch.


Wenn es Fragen gibt schreibt bitte jederzeit gerne einen Kommentar und meldet euch auch bei Wünschen zu Beispielen oder mit Verbesserungsvorschlägen.

Vielen Dank und bis bald,
Markus

Theorie: Nullstäbe im Fachwerk bestimmen

Herzlich Willkommen!

In dieser kurzen Theorieeinheit geht es um wichtige Details bei Fachwerken. Nämlich um die Fragen, was Nullstäbe sind, wie wir diese bestimmen und wozu das gut sein soll. Es gibt dazu drei einfache Regeln, die wir im Video besprechen werden. Außerdem ist wichtig zu wissen, dass uns Nullstäbe zwar die Berechnung des Fachwerks erleichtern, aber aus dem realen Fachwerk nicht einfach entfernt werden dürfen. Warum das so ist und wie das mit den Nullstabregeln funktioniert könnt ihr euch gerne selbst ansehen.


Wenn Fragen offen bleiben, melde dich bitte jederzeit gerne in den Kommentaren und lass mir dort auch Wünsche und Verbesserungsvorschläge da.

Vielen Dank und bis bald,
Markus

Statik: Winkelträger mit Streckenlast

Herzlich Willkommen!

Wie behandeln wir einen Winkelträger in Kombination mit einer Streckenlast? Im Grund wissen wir das bereits aus vergangenen Beispielen. Wir müssen lediglich die drei Konzepte Gleichgewichtsbedingungen, Streckenlast und Gerberträger miteinander kombinieren. Genau das wollen wir hier tun. Es geht dabei um folgendes Beispiel:

Die Auflagerreaktionen in den Lagern A und C des Tragwerks aus Balken und Winkelträger sind zu bestimmen.
Geg.: q,l

Quelle: Aufgabe 6.75 (S. 352) aus Russell C. Hibbeler, Technische Mechanik 1 Statik, 12. Auflage, 2012 Pearson GmbH, München

Auch in diesem Fall eines Winkelträgers können wir wie im Beispiel zum Gerberträger besprochen, das System an den Gelenken trennen und einzelne Gleichgewichte für den oberen und den unteren Teil anschreiben. Für diese beiden Teile lassen sich jeweils die Gleichgewichtsbedingungen (Kräftegleichgewicht und Momentengleichgewicht) anschreiben und schließlich alle unbekannten Größen berechnen. Zum Schluss diskutieren wir noch den auftretenden Zweikraftstab zwischen B und C. Den kompletten Rechenweg im Detail findest du wie gewohnt im verlinkten Video! Viel Spaß und aufschlussreiche Erkenntnisse damit!


Sollten Fragen auftauchen schreibt mir bitte unbedingt hier oder auf YouTube einen Kommentar. Wie ihr hoffentlich in der Vergangenheit gesehen habt, versuche ich alle Fragen verständlich zu beantworten. Auch eine scheinbar einfache Frage ist besser wenn sie geklärt wird. Scheut also bitte nicht davor zurück zu Fragen.

Vielen Dank und bis bald,
Markus

Relativkinetik: Person auf Platte & Rollen

Herzlich Willkommen!

Wir sehen uns in diesem Beitrag ein Beispiel zur Relativkinetik an, welches ein wenig unüblich ist. Warum, das werden wir im Verlauf des Beispiels klären.

Ein Mann der Masse m1 bewegt sich lt. Skizze mit konstanter Relativbeschleunigung arel auf einem Brett der Masse m2. Das Brett liegt auf zwei Rollen mit jeweils Radius r, Masse m3 und Massenträgheitsmoment J. Die Walzen stützen sich am Boden ab und rollen bei der Bewegung ohne zu rutschen.

Geg.: arel, m1, m2, m3, J, r

Bestimme:
*die Absolutgeschwindigkeit v2(t) des Brettes. Dabei gilt v2(t=0)=0.
*die Absolutgeschwindigkeit v1(t) des Mannes.

Quelle: Aufgabe D33 (S. 353f) aus J. Berger, Klausurentrainer Technische Mechanik, 2008, Vieweg+Teubner, Wiesbaden

Und wie immer die Angabe zum Download:

Die Andersartigkeit dieses Beispiels liegt daran, dass es sinnvoll ist Schwerpunkt- und Momentensätze als Ausgangspunkt für die Berechnung zu verwenden, ähnlich wie im Beispiel Block rutscht auf Keil. Sonst gehen wir ja in der Relativkinetik oft von den Geschwindigkeits- und Beschleunigungszusammenhängen aus und nutzen erst zum Schluss Schwerpunkt- und Momentenssätze. Wir machen uns zwar auch hier zu Beginn Gedanken über die Kinematik, aber diese fallen sehr einfach aus. Ausgangspunkt ist daher ein sauberes Freikörperbild in dem wir sämtliche Kräfte und dynamischen Größen notieren. Darauf aufbauend lassen sich dann alle Schwerpunkt- und Momentensätze für die Teile des Systems aufstellen. Damit können wir anschließend bereits die Beschleunigung für das Brett berechnen. Diese führt uns auf direktem Wege, durch Zeitintegration, zur Geschwindigkeit des Bretts und schließlich über die Kinematik zur Geschwindigkeit der Person am Brett. Alle Details gibt es natürlich wieder im verlinkten Video. Viel Spaß damit!

Bei Fragen oder Anmerkungen zu Beispiel oder Rechenweg bitte einfach hier oder auf YouTube einen Kommentar hinterlassen. Ich freue mich auf eure Rückmeldungen und beantworte gerne alle Fragen.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald,
Markus

Statik: Zweifacher Gelenkbalken mit Einspannung

Herzlich Willkommen!

Wir möchten uns in diesem Beitrag einen 2fachen Gerberträger ansehen, d.h. einen Gelenkbalken mit zwei Gelenken laut folgender Angabe.

An einem Gelenkbalken ist unmittelbar rechts vom Gelenk G1 ein Querarm angeschweißt, der durch ein Kräftepaar belastet wird. Außerdem greift unmittelbar rechts vom Gelenk G2 eine Kraft P an.

Wie groß sind die Lagerreaktionen und die Gelenkkräfte?
Wie ändern sie sich, wenn die Kraft P unmittelbar links vom Gelenk G2 angreift?

Quelle: Aufgabe I.4.8 (S. 23) aus W. Hauger et al., Aufgaben zu Technische Mechanik 1-3, 7. Auflage, 2012 Springer, Heidelberg

Wir können wie schon in den anderen Beispielen zum Gerberträger besprochen, den Träger an den Gelenken trennen und einzelne Gleichgewichte anschreiben. Hier erhalten wir also drei Einzelteile. Für jedes davon lassen sich die drei Gleichgewichtsbedingungen aufstellen. Eine Besonderheit hier ist, dass wir sofort sehen, dass es keine Kräfte in Horizontalrichtung geben wird. Wir können also das horizontale Kräftegleichgewicht gleich von Beginn an weglassen. Anschließend sehen wir, dass sich aus den jeweiligen Teilstücken sofort die Unbekannten Größen berechnen lassen, ohne ein Gleichungssystem lösen zu müssen. Zumindest dann, wenn die Reihenfolge der Berechnung an den Teilsystemen klug gewählt wird. Zum Schluss besprechen wir noch die Eingangs gestellte Frage: Macht es einen Unterschied ob die äußere Kraft P unmittelbar rechts oder links von G2 liegt. Diese Frage beantworten und natürlich den kompletten Rechenweg im Detail diskutieren wir im verlinkten Video! Ganz viel Spaß damit!


Sollten Fragen auftauchen schreibt mir bitte unbedingt hier oder auf YouTube einen Kommentar. Wie ihr hoffentlich in der Vergangenheit gesehen habt, versuche ich alle Fragen verständlich zu beantworten. Auch eine scheinbar einfache Frage ist besser wenn sie geklärt wird. Scheut also bitte nicht davor zurück zu Fragen.

Vielen Dank und bis bald,
Markus

Lagrange: Physikalisches Pendel an vertikaler Feder

Herzlich Willkommen!

Diesmal habe ich eine Variation eines schon gerechneten Lagrange-Beispiels für euch, nämlich ein physikalisches Einfachpendel an einer vertikalen Feder.

Ein homogenes Stabpendel der Masse M und der Länge 2L ist an seinem Drehpunkt vertikal federnd aufgehängt. Die Federkonstante beträgt c. Die Erdbeschleunigung wirkt vertikal nach unten und das System bewegt sich nur in der Blattebene.

Bestimme für dieses System:
*die kinetische Energie T und die potentielle Energie V sowie die Lagrange Funktion,
*die Bewegungsgleichungen,
*die linearisierte Form der Bewegungsgleichungen,
*die Bedingung für die Übereinstimmung der Eigenfrequenzen von Translations- und Rotationsschwingung.

Die Angabe gibt es wie gewohnt zum Download.

Wir benötigen zu Beginn wieder die Koordinaten und Geschwindigkeiten der Massepunkte im System um die Energien aufstellen zu können. Die Koordinaten des Aufhängepunktes sind, wie auch im Beispiel zum federnd aufgehängten Doppelpendel, nicht notwendig, obwohl sich dieser natürlich bewegt. Allerdings hat auch hier die Feder in dieser Idealisierung keine Masse und damit auch keine Energie und trägt damit auch nichts zur Lagrangefunktion bei. Damit können wir bereits kinetische und potentielle Energie des Systems, sowie die Lagrangefunktion hinschreiben. Über die wohlbekannten Euler-Lagrange-Gleichungen erhalten wir zwei gekoppelte Bewegungsgleichungen. Eine für den Pendelwinkel und eine für die Federauslenkung. Am Ende sehen wir uns noch die linearisierte Form der Bewegungsgleichungen an und stellen fest, dass es auch dort Kopplungen gibt. Alle Details gibt es wie gewohnt im verlinkten Video. Viel Spaß dabei!

Unterstützt bitte auch meine Arbeit durch ein Like und eine Weiterempfehlung der Website und meines YouTube Kanals. Falls ihr es noch nicht getan habt, helft ihr außerdem mit einem Abo des Blogs und des Kanals. Das kostet schließlich nichts. Vielen Dank!

Viel Spaß mit dem Beispiel und bis bald,
Markus