Lagrange: Massen an beweglichem Faden

Herzlich Willkommen!

Diesmal gibt es ein etwas komplexeres Beispiel aus der Dynamik mit drei Freiheitsgraden. Es handelt sich um folgendes System:

Ein masseloser, undehnbarer Faden der Länge L ist an jedem Ende mit einem Massenpunkt der Masse m verbunden. Der Faden wird reibungsfrei durch zwei Ringe A und B im Abstand b geführt.

Bestimme
*die Zwangsbedingung, sowie die generalisierten Koordinaten und Geschwindigkeiten. *die Lagrange-Funktion des Systems.
*die Bewegungsgleichungen des Systems.

Quelle: Lagrangesche Bewegungsgleichungen Aufgabe 1 (S. 236) aus S. Kessel, Technische Mechanik Aufgabensammlung mit Musterlösungen, 2000, Dortmund

Die Angabe gibt es wie gewohnt als Download inkl. Endergebnissen.

Wie immer in der Lagrange-Mechanik müssen wir uns zuallererst Gedanken über die relevanten Koordinaten machen. Dies sind die Koordinaten der Massenschwerpunkte. Hier stellt sich dann heraus, dass sich vier beschreibende Größen ergeben, nämlich die beiden Seilwinkel, sowie die Längen der Seilstücke vom Aufhängepunkt zur jeweiligen Masse. Nachdem das Seil aber als ideal angenommen wird und damit eine konstante Länge besitzt, kann eine der Länge mittels Zwangsbedingung ersetzt werden. Damit landen wir bei drei Freiheitsgraden. Sobald das geklärt ist, können die Geschwindigkeiten abgeleitet und die Energien für das System aufgestellt werden. Danach erhalten wir aus den Euler-Lagrange-Gleichungen drei gekoppelte Bewegungsgleichungen und besprechen wie diese gelöst werden könnten. All das zeige ich wie üblich im unten verlinkten YouTube Video vor. Viel Spaß mit dem Beispiel!

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Viel Spaß mit diesem Beispiel und bis bald,
Markus

Kraftreduktion: Bindungskräfte und -momente am Ski (Statik)

Herzlich Willkommen!

In diesem Beitrag sehen wir uns ein etwas komplizierteres Beispiel zur Kraftreduktion an. Nämlich einen Ski auf dessen Bindungsbacken sowohl Kräfte als auch Momente wirken.

Die Bindungsbacken eines Skis werden mit den Kräften und Momenten Ft = {−50ex+80ey−158ez} N, Fh = {−20ex + 60ey − 250ez} N, Mt = {−6ex + 4ey + 2ez} Nm und Mh = {−20ex + 8ey + 3ez} Nm belastet. Die gegebenen Abstände sind a=120mm und b=800mm.

Bestimme die äquivalente Kraft und das äquivalente Moment im Punkt P. Schreibe das Ergebnis als kartesischen Vektor an.

Quelle: Aufgabe 4.170 (S. 223) aus Russell C. Hibbeler, Technische Mechanik 1 Statik, 12. Auflage, 2012 Pearson GmbH, München

Im Gegensatz zu einem Zentralkraftsystem muss hier auch ein resultierendes Moment im Reduktionspunkt auftreten. Nur dann ist es möglich ein äquivalentes mechanisches System zu erhalten. Dazu müssen sowohl die Kraftvektoren addiert werden, als auch die Einzelmomente aus den Kräften und eingeprägten Momenten errechnet werden. Die detaillierte Rechnung dazu findet ihr wie üblich im verlinkten YouTube Video. Viel Spaß dabei!


Stellt bitte wie immer gerne Fragen, wenn es Unklarheiten gibt. Ich freue mich außerdem über Anregungen zu weiteren Inhalte und generell eure Rückmeldungen.

Bis bald,
Markus

Stangenschuss beim Fußball – Stoßvorgang

Herzlich Willkommen!

Diesmal sehen wir uns ein etwas sportlicheres Beispiel an, nämlich den Stangenschuss beim Fußball. Wir möchten uns überlegen welcher Effet dem Ball mitgegeben werden muss um ihn von der Stange ins Tor zu bekommen.

Ein Fußball mit Masse m und Trägheitsmoment θs trifft mit der Geschwindigkeit v0 horizontal gegen den rauen Pfosten des Tores. Der Aufprall erfolgt dabei zentrisch unter dem Winkel α zur Torlinie. Die Stoßziffer beträgt ε.

Wie groß muss der Effet, d.h. die Winkelgeschwindigkeit ω0 des Balls sein, damit er nach dem Aufprall über die Torlinie geht, wenn während des Stoßes Haftung eintritt?

Quelle: Aufgabe 6.10 (S. 143) aus D. Gross, W. Ehlers, P. Wriggers, Formeln und Aufgaben zur Technischen Mechanik 3, 8. Auflage, 2007 Springer, Berlin

Die Angabe gibt es wie üblich als Download inkl. Endergebnissen. Ihr könnt damit das Beispiel zuerst selbst rechnen und dann mit meiner Musterlösung vergleichen.

Wir starten dieses Beispiel auch diesmal mit einem Freikörperbild in welches wir alle Geschwindigkeiten und Stoßantriebe einzeichnen. Daraus lassen sich Impuls- und Drehimpulssatz für den Ball ableiten. Zusätzlich benötigen wir die Stoßhypothese und einige Überlegungen zur Kinematik während des Stoßvorganges. Aus dem damit erstellten Gleichungssystem lässt sich dann mit wenigen Zusatzüberlegungen zur Geometrie, der benötigte Effet beim Schuss berechnen. Alle Schritte im Detail besprechen und berechnen wir wieder im verlinkten YouTube Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Kraftreduktion: Zentralkraftsystem (Statik)

Herzlich Willkommen!

Diesmal geht es um die Reduktion eines Zentralkraftsystems.

Es ist ein zentrales Kraftsystem laut Skizze gegeben. Ermitteln Sie die Resultierende der vier Kräfte, deren Betrag sowie den Winkel zur Horizontalen.

Geg.: F1 = 60 kN, F2 = 50 kN, F3 = 30 kN, F4 = 40 kN, α = 40°, β = 20°, γ = 20°

Wir berechnen hier zuerst die Komponenten der einzelnen Kräfte in x- und y-Richtung und bestimmen daraus die Komponenten der resultierenden Kraft. Anschließend bauen wir den Vektor der Resultierenden aus den beiden Komponenten zusammen. Zum Schluss berechnen wir noch den Winkel der Resultierenden zur x-Achse. Nebenbei diskutieren wir noch wichtige Punkte bei der Reduktion eines solchen Kraftsystems bzw. allgemein bei der Lösung von Beispielen aus der technischen Mechanik. Die Details dazu gibt es wie immer im verlinkten YouTube Video zu sehen.


Ich hoffe diese erste Aufgabe zur Statik war verständlich und hilfreich. Wenn es Fragen oder Anregungen gibt, bitte schreibt einen Kommentar und ich antworte gerne.

Bis bald,
Markus

Relativkinetik: Kugel zwischen Platten

Herzlich Willkommen!

In diesem Beispiel zur Relativkinetik geht es um eine Kugel die zwischen zwei parallelen Platten gleiten kann, während die Platten selbst um die vertikale Achse rotieren.

Zwei parallele, starre Platten rotieren mit konstanter Winkelgeschwindigkeit Ω um die raumfeste vertikale z-Achse. Zwischen den Platten kann reibungsfrei eine kleine Kugel (Masse m) gleiten.

Bestimmen Sie die Bewegungsgleichungen des Kugelschwerpunktes in den Koordinaten q1 und q2, sowie die auf Kugel wirkenden Kräfte.

Quelle: Aufgabe D34 (S. 356) aus J. Berger, Klausurentrainer Technische Mechanik, 2. Auflage, 2008 Vieweg+Teubner, Wiesbaden

Und wie immer die Angabe zum Download:

Wir beginnen hier mit der Berechnung des Ortsvektors der Kugel. Anschließend lassen sich die benötigten Geschwindigkeits- und Beschleunigungsterme bestimmen, nämlich Relativgeschwindigkeit und -beschleunigung sowie Führungs- und Coriolisbeschleunigung. Mittels Schwerpunktsatz können wir schließlich die Bewegungsgleichungen des Systems und die auf die Kugel wirkende Normalkraft bestimmen. Die Rechenschritte im Detail, besprechen wir ausführlich im YouTube Video.

Bei Fragen oder Anmerkungen zu Beispiel oder Rechenweg bitte einfach hier oder auf YouTube einen Kommentar hinterlassen. Ich freue mich auf eure Rückmeldungen.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis demnächst,
Markus

Prinzip von d’Alembert: Brett auf Walzen

Herzlich Willkommen!

Heute sehen wir uns wieder einmal ein Beispiel zum Prinzip von d’Alembert an.

Eine Platte der Masse M ruht auf zwei Walzen, die jeweils die Masse m und den Radius r besitzen. Die linke Walze ist als Vollzylinder, die rechte als dünnwandiger Hohlzylinder ausgeführt.

Ges.:
*Bestimme die Beschleunigung der Platte unter der Annahme, dass kein Gleiten auftritt, mit Hilfe des Prinzips von d’Alembert.

Die Angabe gibt es natürlich wieder als Download inkl. Endergebnissen, damit ihr das Beispiel vorab selbst rechnen könnt.

Diese rechnerisch eher kurze Aufgabe eignet sich sehr gut dazu das Prinzip von d’Alembert genauer zu erklären. Wir diskutieren also welche Beiträge es gibt und woher diese kommen. Außerdem klären wir was es mit den d’Alembert’schen Trägheitstermen und Trägheitskräften auf sich hat. Im Zuge dessen rechnen wir selbstverständlich auch die gefragte Beschleunigung des Brettes aus. Das und noch einiges mehr gibt es wieder im verlinkten YouTube Video zu sehen. Viel Spaß damit!

Wenn ihr Fragen habt schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen schnellstmöglich beantworten.

Hat euch das Video gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Alles Gute und bis bald,
Markus

Kreiseldynamik einer Mischmaschine – Lagerbelastung berechnen

Herzlich Willkommen!

Wir widmen uns wieder einem Kreiselbeispiel. Darin wollen wir heute die Lager einer idealisierten Mischmaschine dynamisch auslegen. Folgendes ist gegeben:

Ein Rotor sei in einem rotierenden Rahmen gelagert. Die Masse des Rotors ist m, seine Massenträgheitsmomente Ix sowie Iy = Iz und seine Winkelgeschwindigkeit relativ zum Rahmen ωR. Für den Rahmen sind die Abmessungen l, der Winkel α sowie seine Winkelgeschwindigkeit Ω und Winkelbeschleunigung Ω˙ gegeben. Alle Lager sind als reibungsfrei anzunehmen.

Ges.:
*Die Bestimmungsgleichungen für die Kräfte auf den Rotor in A und B dargestellt im rahmenfesten x-y-z-System.
*Die relative Winkelbeschleunigung ω˙R des Rotors.

Quelle: Aufgabe 4.4.2 (S. 41) aus P. Lugner et al., Technische Mechanik, 1992 Springer-Verlag, Wien

Die Angabe zum Download findet ihr wie immer hier:

Wie meistens, starten wir mit einem Freikörperbild. Nachdem wir uns darüber im Klaren sind wie die Winkelgeschwindigkeiten im gegeben Koordinatensystem wirken, können wir den Drehimpulsvektor anschreiben. Für den Drehimpulssatz benötigen wir die Zeitableitung dieses Drehimpulsvektors. Diesmal haben wir auch eine nicht verschwindende partielle Zeitableitung. Der zweite Term des Drehimpulssatzes ist der Vektor der äußeren Momente. Die Momente entstehen aus den Lagerkräften und ermöglichen uns damit die Bestimmung eben dieser Lagerkräfte. Am Ende bestimmen wir noch ω_R und stellen fest, dass dessen x-Komponente konstant sein muss. Die Rechenschritte im Detail besprechen wir ausführlich im verlinkten YouTube Video. Viel Spaß damit!

Sämtliche Fragen beantworte ich wie immer sehr gerne – schreibt sie mir bitte einfach hier oder auf YouTube als Kommentar.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald,
Markus

Lagrange: Doppelschaukel

Herzlich Willkommen!

Im heutigen Beispiel sehen wir uns die Dynamik einer Doppelschaukel an. Dabei vergleichen wir diese auch mit dem klassischsten aller Lagrange-Beispiele, dem mathematischen Doppelpendel.

Gegeben ist eine Doppelschaukel laut Skizze.

Ges.:
*Die Lagrange-Funktion des Systems.
*Die Bewegungsgleichungen der Doppelschaukel.

Die Angabe zum vorab selbst rechnen gibt es wieder als Download inkl. Endergebnissen.

Bei genauerer Betrachtung der Angabe lässt sich feststellen, dass die skizzierte Doppelschaukel analog zum mathematischen Doppelpendel gerechnet werden kann. Wir stellen also zuerst die Koordinaten der Schaukelschwerpunkte als Funktion der generalisierten Koordinaten, d.h. der beiden Schaukelwinkel, auf. Durch Zeitableitung dieser Koordinaten erhalten wir die Geschwindigkeiten der Schaukelschwerpunkte. Danach können wir sowohl kinetische als auch potentielle Energie berechnen um damit die Lagrangefunktion anzuschreiben. Mithilfe der Euler-Lagrange-Gleichungen erhalten wir schließlich zwei gekoppelte Bewegungsgleichungen für das System, jeweils eine für beide Schaukelwinkel. Die detaillierte Rechnung und viele weitere Bemerkungen, u. A. zur Eindeutigkeit der Lagrangefunktion findet ihr im verlinkten YouTube Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Viel Spaß mit diesem Beispiel und bis bald,
Markus

Seilstraffung als Stoßvorgang

Herzlich Willkommen!

Wir wollen uns heute ein Beispiel ansehen bei dem zwei Stoßvorgänge hintereinander stattfinden. Der erste ist ein durch Seilstraffung ausgelöster Stoßvorgang, der zweite dann ein klassischer Stoß zwischen Kugel und Quader. Insbesondere die Seilstraffung beinhaltet ein paar interessante Gedankengänge, die wir im Detail besprechen werden. Zuerst allerdings zur Angabe:

Eine Kugel mit der Masse mA, die als Massenpunkt angenähert werden kann, ist über ein schlaffes Seil mit dem Lager C verbunden. Die Kugel wird lt. Skizze aus der Horizontalen im Abstand 3/4 l vom Lager losgelassen. Das Seil wird als undehnbar angenommen, so dass bei der Straffung ein plastischer Stoß (Stoßziffer ε = 0) auftritt. In der Vertikalen trifft das Fadenpendel anschließend vollkommen elastisch (Stoßziffer ε = 1) auf einen Quader der Masse mB und verschiebt diesen auf einer rauen Ebene mit dem Reibungskoeffizient μ.

Geg.:
mA = 2 kg, mB = 5 kg, l = 1.2 m, μ = 0.3

Ges.:
*Geschwindigkeit der Kugel unmittelbar vor der Seilstraffung.
*Geschwindigkeit der Kugel nach dem Straffungsstoß und Stoßantrieb auf das Lager C. *Geschwindigkeit der Kugel unmittelbar vor dem Stoß mit dem Quader. *Geschwindigkeiten von Kugel und Quader unmittelbar nach deren Stoß.
*Die Höhe auf welche die Kugel zurückpendelt und die Strecke um die der Quader verschoben wird.

Quelle: Aufgabe D30 (S. 345f.) aus J. Berger, Klausurentrainer Technische Mechanik, 2. Auflage, 2008 Vieweg+Teubner, Wiesbaden

Die Angabe gibt es wie üblich als Download inkl. Endergebnissen. Ihr könnt damit das Beispiel zuerst selbst rechnen und dann mit meiner Musterlösung vergleichen.

Wir starten dieses Beispiel wieder mit einem Freikörperbild und berechnen insbesondere die Geometrie für den freien Fall der Kugel. Danach diskutieren wir eine Koordinatentransformation die uns die Berechnung des Straffungsstoßes erleichtert. In diesem Zusammenhang besprechen wir auch wie der Straffungsstoß ablaufen wird. Nachdem das geklärt ist, können die Geschwindigkeiten unmittelbar nach dem Stoßvorgang und der Stoßantrieb auf das Lager C berechnet werden. Mittels Energieerhaltung lässt sich dann die Geschwindigkeit der Kugel vor dem Stoß mit dem Quader bestimmen und der elastische Stoß zwischen Kugel und Quader berechnen. Hier führen wir auch eine Plausibilitätskontrolle durch, was immer eine gute Sache ist. Am Ende berechnen wir noch wie weit die Kugel zurückschwingt und wie weit der Quader auf der reibungsbehafteten Unterlage rutscht. Alle Schritte im Detail besprechen und berechnen wir wieder im verlinkten YouTube Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis morgen mit dem nächsten Beispiel,
Markus

Relativkinetik: Block rutscht auf Keil

Herzlich Willkommen!

Das letzte der nachzuholenden Beispiele ist noch einmal aus der Relativkinetik. Allerdings handelt es sich um eher untypische Relativkinetik. Warum, werden wir weiter unten besprechen. Zuerst aber zur Angabe.

Ein Keil der Masse m2 und des Neigungswinkels α kann sich entsprechend der Abbildung auf einer horizontalen Ebene bewegen. Auf dem Keil befindet sich im höchsten Punkt ein Quader, der aus der Ruhelage heraus reibungsfrei nach unten rutscht.

Geg.:
m1 = 3 kg, m2 = 6 kg, α = 30°, l = 1.2 m

Ges.:
*Beschleunigung des Quaders und des Keils.
*Geschwindigkeit des Quaders und des Keils, wenn der Quader seine tiefste Lage erreicht.
*Verschiebung des Keils, wenn der Quader seine tiefste Lage erreicht.

Quelle: Aufgabe D34 (S. 356) aus J. Berger, Klausurentrainer Technische Mechanik, 2. Auflage, 2008 Vieweg+Teubner, Wiesbaden

Und wie immer die Angabe zum Download:

In der Einleitung habe ich es schon angesprochen: Dieses Beispiel ist etwas unüblich für Relativkinetik. Wir müssen hier nämlich mit den Schwerpunktsätzen starten und können uns erst damit die relevanten Beschleunigungen ausrechnen. Normalerweise ist es umgekehrt. Daher ist besonders hier ein sauberes Freikörperbild essentiell. Zur besseren Veranschaulichung fertigen wir sogar zwei separate Freikörperbilder an. Eines für die Kräfte und eines für die Beschleunigungen. Damit können wir dann die Schwerpunktsätze aufstellen und uns daraus und mit Hilfe kinematischer Zusammenhänge alle gefragten Werte berechnen. Die Rechenschritte im Detail, besprechen wir ausführlich im YouTube Video.

Bei Fragen oder Anmerkungen zu Beispiel oder Rechenweg bitte einfach hier oder auf YouTube einen Kommentar hinterlassen. Ich freue mich auf eure Rückmeldungen.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis morgen mit einer weiteren Einheit zur Theorie,
Markus