Flugzeugtragfläche: Momente als Vektoren

Herzlich Willkommen!

Diesmal geht es darum zu zeigen, dass auch Momente wie reguläre Vektoren behandelt werden können. Insbesondere können wir sie auf bestimmte Achsen projizieren.

Der Hauptträger einer pfeilförmigen Flugzeugtragfläche ist um den Winkel α gegen die x‘-Achse nach hinten geneigt. In Lastberechnungen wurde ermittelt, dass am Träger die Momente Mx und My angreifen.

Bestimme das resultierende Moment um die x‘- und y‘-Achsen. Alle Achsen liegen in der gleichen horizontalen Ebene.

Quelle: Aufgabe 4.89 (S. 209) aus Russell C. Hibbeler, Technische Mechanik 1 Statik, 12. Auflage, 2012 Pearson GmbH, München

Hier soll bestimmt werden welche Momente parallel bzw. normal zum Hauptholm einer Flugzeugtragfläche wirken. Dazu können die bekannten Momentenvektoren einfach regulär projiziert werden. Es ergibt sich also jeweils ein Anteil von Mx und My sowohl entlang x‘ als auch entlang y‘. Dies ist sehr einfach berechnet, wie ihr im unten verlinkten Video sehen könnt. Viel Spaß beim Nachvollziehen!


Stellt bitte wie immer gerne Fragen, wenn es Unklarheiten gibt. Ich freue mich außerdem über Anregungen zu weiteren Inhalte und generell eure Rückmeldungen. Gebt dem Video auch gerne einen Daumen hoch und abonniert den YouTube Kanal. Vielen Dank für eure Unterstützung!

Bis bald,
Markus

Lagrange: Massen an beweglichem Faden

Herzlich Willkommen!

Diesmal gibt es ein etwas komplexeres Beispiel aus der Dynamik mit drei Freiheitsgraden. Es handelt sich um folgendes System:

Ein masseloser, undehnbarer Faden der Länge L ist an jedem Ende mit einem Massenpunkt der Masse m verbunden. Der Faden wird reibungsfrei durch zwei Ringe A und B im Abstand b geführt.

Bestimme
*die Zwangsbedingung, sowie die generalisierten Koordinaten und Geschwindigkeiten. *die Lagrange-Funktion des Systems.
*die Bewegungsgleichungen des Systems.

Quelle: Lagrangesche Bewegungsgleichungen Aufgabe 1 (S. 236) aus S. Kessel, Technische Mechanik Aufgabensammlung mit Musterlösungen, 2000, Dortmund

Die Angabe gibt es wie gewohnt als Download inkl. Endergebnissen.

Wie immer in der Lagrange-Mechanik müssen wir uns zuallererst Gedanken über die relevanten Koordinaten machen. Dies sind die Koordinaten der Massenschwerpunkte. Hier stellt sich dann heraus, dass sich vier beschreibende Größen ergeben, nämlich die beiden Seilwinkel, sowie die Längen der Seilstücke vom Aufhängepunkt zur jeweiligen Masse. Nachdem das Seil aber als ideal angenommen wird und damit eine konstante Länge besitzt, kann eine der Länge mittels Zwangsbedingung ersetzt werden. Damit landen wir bei drei Freiheitsgraden. Sobald das geklärt ist, können die Geschwindigkeiten abgeleitet und die Energien für das System aufgestellt werden. Danach erhalten wir aus den Euler-Lagrange-Gleichungen drei gekoppelte Bewegungsgleichungen und besprechen wie diese gelöst werden könnten. All das zeige ich wie üblich im unten verlinkten YouTube Video vor. Viel Spaß mit dem Beispiel!

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Musterlösung gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Viel Spaß mit diesem Beispiel und bis bald,
Markus

Kraftreduktion: Bindungskräfte und -momente am Ski (Statik)

Herzlich Willkommen!

In diesem Beitrag sehen wir uns ein etwas komplizierteres Beispiel zur Kraftreduktion an. Nämlich einen Ski auf dessen Bindungsbacken sowohl Kräfte als auch Momente wirken.

Die Bindungsbacken eines Skis werden mit den Kräften und Momenten Ft = {−50ex+80ey−158ez} N, Fh = {−20ex + 60ey − 250ez} N, Mt = {−6ex + 4ey + 2ez} Nm und Mh = {−20ex + 8ey + 3ez} Nm belastet. Die gegebenen Abstände sind a=120mm und b=800mm.

Bestimme die äquivalente Kraft und das äquivalente Moment im Punkt P. Schreibe das Ergebnis als kartesischen Vektor an.

Quelle: Aufgabe 4.170 (S. 223) aus Russell C. Hibbeler, Technische Mechanik 1 Statik, 12. Auflage, 2012 Pearson GmbH, München

Im Gegensatz zu einem Zentralkraftsystem muss hier auch ein resultierendes Moment im Reduktionspunkt auftreten. Nur dann ist es möglich ein äquivalentes mechanisches System zu erhalten. Dazu müssen sowohl die Kraftvektoren addiert werden, als auch die Einzelmomente aus den Kräften und eingeprägten Momenten errechnet werden. Die detaillierte Rechnung dazu findet ihr wie üblich im verlinkten YouTube Video. Viel Spaß dabei!


Stellt bitte wie immer gerne Fragen, wenn es Unklarheiten gibt. Ich freue mich außerdem über Anregungen zu weiteren Inhalte und generell eure Rückmeldungen.

Bis bald,
Markus

Stangenschuss beim Fußball – Stoßvorgang

Herzlich Willkommen!

Diesmal sehen wir uns ein etwas sportlicheres Beispiel an, nämlich den Stangenschuss beim Fußball. Wir möchten uns überlegen welcher Effet dem Ball mitgegeben werden muss um ihn von der Stange ins Tor zu bekommen.

Ein Fußball mit Masse m und Trägheitsmoment θs trifft mit der Geschwindigkeit v0 horizontal gegen den rauen Pfosten des Tores. Der Aufprall erfolgt dabei zentrisch unter dem Winkel α zur Torlinie. Die Stoßziffer beträgt ε.

Wie groß muss der Effet, d.h. die Winkelgeschwindigkeit ω0 des Balls sein, damit er nach dem Aufprall über die Torlinie geht, wenn während des Stoßes Haftung eintritt?

Quelle: Aufgabe 6.10 (S. 143) aus D. Gross, W. Ehlers, P. Wriggers, Formeln und Aufgaben zur Technischen Mechanik 3, 8. Auflage, 2007 Springer, Berlin

Die Angabe gibt es wie üblich als Download inkl. Endergebnissen. Ihr könnt damit das Beispiel zuerst selbst rechnen und dann mit meiner Musterlösung vergleichen.

Wir starten dieses Beispiel auch diesmal mit einem Freikörperbild in welches wir alle Geschwindigkeiten und Stoßantriebe einzeichnen. Daraus lassen sich Impuls- und Drehimpulssatz für den Ball ableiten. Zusätzlich benötigen wir die Stoßhypothese und einige Überlegungen zur Kinematik während des Stoßvorganges. Aus dem damit erstellten Gleichungssystem lässt sich dann mit wenigen Zusatzüberlegungen zur Geometrie, der benötigte Effet beim Schuss berechnen. Alle Schritte im Detail besprechen und berechnen wir wieder im verlinkten YouTube Video.

Bei Fragen schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen wie immer schnellstmöglich beantworten.

Hat euch das Beispiel und die Erklärung dazu gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis bald mit dem nächsten Beispiel,
Markus

Kraftreduktion: Zentralkraftsystem (Statik)

Herzlich Willkommen!

Diesmal geht es um die Reduktion eines Zentralkraftsystems.

Es ist ein zentrales Kraftsystem laut Skizze gegeben. Ermitteln Sie die Resultierende der vier Kräfte, deren Betrag sowie den Winkel zur Horizontalen.

Geg.: F1 = 60 kN, F2 = 50 kN, F3 = 30 kN, F4 = 40 kN, α = 40°, β = 20°, γ = 20°

Wir berechnen hier zuerst die Komponenten der einzelnen Kräfte in x- und y-Richtung und bestimmen daraus die Komponenten der resultierenden Kraft. Anschließend bauen wir den Vektor der Resultierenden aus den beiden Komponenten zusammen. Zum Schluss berechnen wir noch den Winkel der Resultierenden zur x-Achse. Nebenbei diskutieren wir noch wichtige Punkte bei der Reduktion eines solchen Kraftsystems bzw. allgemein bei der Lösung von Beispielen aus der technischen Mechanik. Die Details dazu gibt es wie immer im verlinkten YouTube Video zu sehen.


Ich hoffe diese erste Aufgabe zur Statik war verständlich und hilfreich. Wenn es Fragen oder Anregungen gibt, bitte schreibt einen Kommentar und ich antworte gerne.

Bis bald,
Markus

Relativkinetik: Kugel zwischen Platten

Herzlich Willkommen!

In diesem Beispiel zur Relativkinetik geht es um eine Kugel die zwischen zwei parallelen Platten gleiten kann, während die Platten selbst um die vertikale Achse rotieren.

Zwei parallele, starre Platten rotieren mit konstanter Winkelgeschwindigkeit Ω um die raumfeste vertikale z-Achse. Zwischen den Platten kann reibungsfrei eine kleine Kugel (Masse m) gleiten.

Bestimmen Sie die Bewegungsgleichungen des Kugelschwerpunktes in den Koordinaten q1 und q2, sowie die auf Kugel wirkenden Kräfte.

Quelle: Aufgabe D34 (S. 356) aus J. Berger, Klausurentrainer Technische Mechanik, 2. Auflage, 2008 Vieweg+Teubner, Wiesbaden

Und wie immer die Angabe zum Download:

Wir beginnen hier mit der Berechnung des Ortsvektors der Kugel. Anschließend lassen sich die benötigten Geschwindigkeits- und Beschleunigungsterme bestimmen, nämlich Relativgeschwindigkeit und -beschleunigung sowie Führungs- und Coriolisbeschleunigung. Mittels Schwerpunktsatz können wir schließlich die Bewegungsgleichungen des Systems und die auf die Kugel wirkende Normalkraft bestimmen. Die Rechenschritte im Detail, besprechen wir ausführlich im YouTube Video.

Bei Fragen oder Anmerkungen zu Beispiel oder Rechenweg bitte einfach hier oder auf YouTube einen Kommentar hinterlassen. Ich freue mich auf eure Rückmeldungen.

Hat euch das Video gefallen? Dann lasst bitte ein Like hier auf dem Blog und auf YouTube da. Abonniert auch unbedingt den Kanal um kein Video mehr zu verpassen. Vielen Dank!

Bis demnächst,
Markus

Integration von Vektoren

Herzlich Willkommen!

In diesem vorerst letzten Beispiel zur Vektorrechnung sehen wir uns noch an wie Vektoren integriert werden können.


Einleitung
Wir sehen uns zum Abschluss unserer kurzen Einführung in die Vektorrechnung noch an, wie wir einen Vektor integrieren können. Auch das werden wir in Zukunft brauchen.

Beispielerklärung
Wir haben hier eine Aufgabe, einen Vektor zu integrieren, und zwar ein konkretes Integral K zu bilden. Aus dem Vektor A als Funktion einer Variable s eines Pfades, beispielsweise entlang dieses Pfades s. In diesem Fall haben wir sogar ein bestimmtes Integral. Bestimmtes Integral, als Erinnerung, heißt: Wir haben Grenzen gegeben, also einen Punkt, von dem wir starten, und einen Punkt, zu dem wir hinwollen.

Berechnung des Integrals
Wie berechnen wir nun dieses Integral? Ja, genau wie bei einer anderen Funktion, die kein Vektor ist. Indem wir einfach das Polynom integrieren. Das wollen wir also konkret durchführen. Das Integral ist dann K und soll von s ist 2 bis 4 laufen. Und wir brauchen einfach nur alle Komponenten unseres Vektors A hier oben in das Integral reinschreiben und dann entsprechend die x y z Komponente getrennt integrieren. Die Einheitsvektoren bleiben dabei. Und damit haben wir es nach wie vor natürlich mit einem Vektor zu tun. Wir haben also oben abgeschrieben. 9 s Quadrat minus eins in x Richtung plus 4 s minus 6 in y Richtung und 10 s der Dritten minus 4 s in z Richtung. Das Ganze integriert über s, also ds. Schauen wir uns an, wie wir über s integrieren. Ich mache wieder eine große eckige Klammer und wir haben hier neun s Quadrat 9 s Quadrat wird 9 ist da drin ein Drittel. Eins wird s also minus s. x Richtung bleibt die x Richtung. Plus auch hier 4 s Quadrat halbe minus 6 s in y Richtung. Standardmäßige Polynomintegration. Und die z Richtung: 10 s der Vierten Viertel minus 4 s Quadrat halbe in z Richtung. Und das Ganze zwischen den Grenzen 2 und 4. Dann lässt sich entsprechend natürlich kürzen. Ich kürze hier gleich direkt in der Rechnung. Wir haben hier drei gekürzt und hier zwei gekürzt. Und hier 4 gekürzt mit 2 und 5 und hier noch einmal die 2 gekürzt mit 2. Also alles entsprechend durchkürzen. Und dann können wir unsere Grenzen einsetzen. Wir wissen obere Grenze minus untere Grenze, also 4 eingesetzt, entsprechend hier in den ganzen Termen. Abgezogen, davon die 2 für jeden Term separat und ich führe das einfach durch und stecke das Ganze in eine runde Klammer, sodass wir die Richtungen beibehalten. Wir haben hier also 3 mal die obere Grenze 4 zur Dritten, minus s minus obere Grenze. Und dann das ganze Minus, nämlich minus 3 mal untere Grenze 2 zur Dritten und das Minus vom Minus wird hier zum Plus mit dem Gesamtminus, also plus 2 in x Richtung. Analog für die anderen bitte einfach mit nachvollziehen. Das lautet dann hier zweimal 4 Quadrat minus 6 mal 4 ist die obere Grenze. Abzüglich der unteren Grenze ist 2 mal 2 Quadrat plus mit dem Minus von oben 6 mal 2 ist die y Richtung. Und dann noch die z Richtung, nämlich 5 mal 4 obere Grenze zur vierten halbe minus 2 mal 4 Quadrat. Und dann die untere Grenze minus 5 mal 2 zur vierten halbe plus 2 mal 2 Quadrat. Wieder mit dem Minus von oben. z Komponente. Und dann einfach nur noch alles zusammengefasst und wir landen bei einem Vektor K aus der Integration von 166 in x Richtung plus 12 in y Richtung und plus 576 in z Richtung.

Zusammenfassung
Das ist unser gesuchtes Ergebnis und wir sehen, die Integration des Vektors ist genau analog durchzuführen zur Integration von Polynomfunktionen bzw. von allgemeinen Funktionen. Je nachdem, was im Vektor drinnen steht. Auch das werden wir konkret später noch brauchen. Und wir haben hier jetzt damit diese Einführung in die Vektorrechnung Addition, Subtraktion, Skalarprodukt, Kreuzprodukt, Spatprodukt, Ableitung, Integration und auch die Ortsvektoren abgeschlossen und können uns damit den ersten Themen der eigentlichen technischen Mechanik zuwenden. Das werden wir im nächsten Video tun. Wenn es zu diesem Video oder allgemein zu irgendeinem Thema bzw. konkret zur Vektorrechnung Fragen gibt. Wenn ihr gerne Beispiele hättet, die ich durchbesprechen soll, dann schreibt mir das bitte einfach in den Kommentaren oder per E-Mail und ich werde das alles versuchen zu berücksichtigen. Wir sehen uns dann beim nächsten Mal.

Bis dahin alles Gute und bis bald,
Markus

Prinzip von d’Alembert: Brett auf Walzen

Herzlich Willkommen!

Heute sehen wir uns wieder einmal ein Beispiel zum Prinzip von d’Alembert an.

Eine Platte der Masse M ruht auf zwei Walzen, die jeweils die Masse m und den Radius r besitzen. Die linke Walze ist als Vollzylinder, die rechte als dünnwandiger Hohlzylinder ausgeführt.

Ges.:
*Bestimme die Beschleunigung der Platte unter der Annahme, dass kein Gleiten auftritt, mit Hilfe des Prinzips von d’Alembert.

Die Angabe gibt es natürlich wieder als Download inkl. Endergebnissen, damit ihr das Beispiel vorab selbst rechnen könnt.

Diese rechnerisch eher kurze Aufgabe eignet sich sehr gut dazu das Prinzip von d’Alembert genauer zu erklären. Wir diskutieren also welche Beiträge es gibt und woher diese kommen. Außerdem klären wir was es mit den d’Alembert’schen Trägheitstermen und Trägheitskräften auf sich hat. Im Zuge dessen rechnen wir selbstverständlich auch die gefragte Beschleunigung des Brettes aus. Das und noch einiges mehr gibt es wieder im verlinkten YouTube Video zu sehen. Viel Spaß damit!

Wenn ihr Fragen habt schreibt bitte hier oder auf YouTube einen Kommentar. Ich werde eure Fragen schnellstmöglich beantworten.

Hat euch das Video gefallen? Dann lasst bitte ein Like auf YouTube da und abonniert diesen Blog. Abonniert auch unbedingt den YouTube Kanal um kein Video mehr zu verpassen. Vielen Dank!

Alles Gute und bis bald,
Markus

Ableitung eines Vektorfeldes

Herzlich Willkommen!

Diesmal besprechen wir was es mit Vektorfeldern auf sich hat und wie wir diese ableiten können. Felder haben eine wichtige Bedeutung in der Technischen Mechanik beispielsweise in der Elastizitätstheorie. Daher ist es auch wichtig zu wissen was Felder sind und wie wir sie behandeln müssen.

Einleitung
Wie wir Ableitungen von Vektoren bilden, haben wir uns im letzten Beitrag angesehen. Heute wollen wir einen Schritt weitergehen und uns ansehen, wie wir eine Ableitung von einem Vektorfeld durchführen können.

Beispielerklärung
Konkret haben wir es hier mit einem Vektorfeld A zu tun und einem Skalarfeld Psi. Was Felder genau sind, werden wir dann bei den Materialgesetzen noch diskutieren. Nur kurz als Teaser: Ein Feld ist ein Vektor, der an jeder Stelle im Raum eine andere Orientierung haben kann. Also im Allgemeinen ein Vektor der hier von den Raumkoordinaten abhängt. Beim Skalarfeld ist es genau das gleiche, nur dass dieses eben kein Vektor ist, sondern nur ein Skalar, aber eine andere Größe hat, je nachdem wo im Raum wir uns befinden. Wir wollen also hier von diesen beiden Feldern die konkrete Ableitung hier bestimmen, nämlich die zweite gemischte Ableitung nach Ypsilon und z. Von dem Produkt Skalarfeld mal Vektorfeld. Und zwar wollen wir das Ganze dann auch in einem speziellen Punkt machen. Vorerst aber einmal einfach allgemein. Wie sieht das Ganze konkret aus?

Berechnung der Ableitung
Das Ergebnis wird, wenn wir uns das genauer ansehen, ein Vektor werden und ich nenne diesen Vektor K. Wir bestimmen also den Vektor K als zweite gemischte Ableitung dy dz vom Produkt Psi Skalarfeld mit dem Vektorfeld A. Am Ende wollen wir das Ganze auch noch in einem bestimmten Punkt ausrechnen, nämlich im Punkt P eins, zwei und eins. Wie machen wir das? Wir schreiben einfach hin: K ist als Vektor dann nichts anderes als diese gemischte Ableitung, d zwei dy dz vom Produkt Psi mit A. Das Produkt Psi mit A ist einfach dieses Psi auf jede Komponente von A drauf multipliziert. So wie wir das in der Theorie diskutiert haben. Das heißt, wir bekommen hier 6 x^4, ein x kommt vom Psi. Ypsilon ebenfalls der vierten. Hier haben wir y quadrat im Psi, mal z auch aus dem Psi. Das ist die x Komponente und analog für y und z einfach die Komponenten von Psi dazu multipliziert. Also x, y^4, z^2 in y-Richtung und minus x^2 y^2, z^3 in z-Richtung. Das ist einmal unser Produkt. Und davon müssen wir jetzt die gemischte Ableitung bilden. Wir leiten dazu einmal zuerst nach dem z ab und machen dann die y-Ableitung nachfolgend. Das heißt, wir haben hier 6 x^4 y^4. z wird eins, weil wir nach z ableiten plus 2 x y^4 z vom z Quadrat in y Richtung und minus 3 x^2 y^2 z^2 in z-Richtung. Erste Ableitung. Zweite Ableitung: Nach dem y landen wir bei 24 x^4 y^3 in x-Richtung, plus 8 y^3 z in y Richtung und minus 6 x^2 y z^2 in z-Richtung. Das ist unser allgemeiner Vektor K. Die allgemeine Ableitung und wäre eine Antwort auf die obige Frage, nämlich genau diese Ableitung, wie sie oben steht.

Berechnung im konkreten Punkt P
Wir können das Ganze jetzt auch eben in dem Punkt P anschreiben, indem wir einfach für x = 1, für y = -2 und für z wiederum 1 einsetzen und wir schreiben das auch dann so her: K Vektor von 1, -2, 1 und setzen entsprechend ein. Multiplizieren gleich alles aus. Das überlasse ich jedem für sich. Und landen bei: 192 Minus in x Richtung, minus 64 in y-Richtung und plus 12 in z-Richtung. Das wäre dann unser zweites Ergebnis im Punkt P. Und so lässt sich jeder beliebige Punkt, den wir gerne berechnen würden, für dieses K bestimmen. Und wie wir anhand des Ergebnisses von K sehen, ist auch K wiederum ein Feld.

Charakteristikum eines Feldes
Das heißt, wenn wir einen anderen Punkt einsetzen, dann kommt auch tatsächlich ein anderes Ergebnis heraus und damit ein anderer Vektor an diesem Punkt im Raum. Und das ist das Charakteristikum von einem Feld, von einem Vektorfeld konkret. Und das brauchen wir dann später auch noch. Zum Beispiel bei den Verschiebungen, wenn es darum geht, wie sich ein Körper verformt. Das sehen wir uns aber etwas später dann bei den Materialgesetzen an. Ich hoffe die Vorgehensweise hier war klar. Das Video hat dich weitergebracht. Wenn es Fragen gibt, bitte in den Kommentaren stellen. Wenn du noch kein Abonnent, keine Abonnentin bist, bitte das nachholen, um mir zu helfen, die Reichweite des Kanals zu erhöhen. Und ich hoffe wir sehen uns beim nächsten Video wieder und wünsche dir bis dahin alles Gute.

Bis bald,
Markus

Ableitung von Vektoren

Herzlich Willkommen!

Im heutigen Beitrag sehen wir uns an wie ein Vektor abgeleitet werden kann.

Einleitung
Ab einem gewissen Punkt in der technischen Mechanik spielen auch Ableitung und Integration von Vektoren eine gewisse Rolle. Wir wollen uns also in den letzten Beispielen zur Vektorrechnung noch ansehen, wie wir einen Vektor ableiten, wie wir ein Vektorfeld ableiten und wie wir einen Vektor integrieren können. Heute geht es darum, Vektoren abzuleiten. Wie das konkret funktioniert, das sehen wir uns gleich an.

Beispielangabe
Das Ableiten von Vektoren funktioniert im Grunde genau gleich wie das Ableiten von Funktionen, mit dem einzigen Unterschied, dass wir auch noch Komponenten des Vektors beibehalten. Wir wollen uns das an dem gegebenen Beispiel hier ansehen. Wir haben nämlich einen Vektor A, der von der Zeit abhängt, und wir haben einen Vektor B, der von der Zeit abhängt. Und wir möchten gerne die totalen Ableitungen der beiden Vektoren bestimmen und dann auch die Ableitung des Skalarprodukts dieser beiden Vektoren. Das funktioniert, wie wir sehen werden, sehr einfach. Wenn wir wissen, wie Polynome abzuleiten sind, und das sollte ja in der Regel kein großes Problem sein.

Ableitung von A
Schauen wir uns also einmal den Vektor A an. Die Zeitableitung von A. dA als Funktion der Zeit nach der Zeit abgeleitet ist. Die Zeitableitung des Vektors abgeschrieben. 5 t in 1 Richtung + 8 t Quadrat in 2 Richtung minus 6 t in drei Richtungen bzw. analog einfach als Spaltenvektor angeschrieben, je nach Belieben. Und das heißt, wir machen einfach die Ableitung der einzelnen Richtungen 1, 2 und 3 und landen also wieder bei einem Vektor, sinnvollerweise. 5 t abgeleitet ergibt 5 e1. 8 t Quadrat abgeleitet wir wissen t Quadrat abgeleitet gibt zweimal t zweimal 8 ist 16, also 16 t in die 2 Richtung und minus sechs t abgeleitet ergibt entsprechend minus 6 in die 3 Richtung.

Ableitung von B
Genau das gleiche für den Vektor B. dB von t nach dt ist demnach dt unseres Vektors B von oben abgeschrieben. Minus 3 t der dritten in 1 Richtung +2 t Quadrat in 2 Richtung minus 10 t in 3 Richtung. Auch hier wieder jede einzelne Komponente entsprechend abgeleitet minus 3 t der dritten t der dritten abgeleitet ist dreimal t Quadrat dreimal drei ist neun, also minus 9 t Quadrat in eins Richtung Plus hier kommt 2 herunter; 4 t in 2 Richtung und minus 10 in 3 Richtung. Das t abgeleitet wird zu eins. Auch hier wieder die beiden Vektoren.

Ableitung des Skalarprodukts
Dann führen wir die Ableitung der Skalarprodukts aus. Dazu müssen wir natürlich zuerst das Skalarprodukt durchführen A in B skalar und davon dann die Ableitung. Wir machen uns zunutze, dass die beiden Vektoren bereits oben in der Klammer stehen, machen also das Skalarprodukt aus diesen jeweiligen Komponenten hier. Wir sehen also, wir haben fünf t mal minus drei t der dritten ist jeweils die 1-Einrichtung. Skalar fällt natürlich dann die 1-Einrichtung weg, also minus 15 und t mal t der dritten t der vierten plus 16 t der vierten aus acht t Quadrat, zwei t Quadrat und 60 t Quadrat aus minus sechs t Mal minus 10 t. Davon wieder die Ableitung gebildet ergibt dann minus 60 t der Dritten aus dem ersten Term plus 64 t der Dritten aus dem zweiten Term plus 120 t aus dem dritten Term. Und dann entsprechend die t der Dritten zusammengefasst ergibt 4 t der Dritten plus 120 t. Das sind unsere drei Ergebnisse. Die Ableitungen der Einzelvektoren und die Ableitung des Skalarprodukts.

Wenn es Fragen dazu gibt, biete gerne die Fragen jederzeit stellen und ich hoffe, das Video hat dir weitergeholfen und wir sehen uns beim nächsten Video wieder.

Bis dahin alles Gute,
Markus